使用PyTorch实现混合专家(MoE)模型

news/2024/7/27 7:15:32/文章来源:https://blog.csdn.net/m0_46510245/article/details/135495752

Mixtral 8x7B 的推出在开放 AI 领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型的优势,以提供更好的预测。它是围绕一个门控网络和一组专家网络构建的,每个专家网络都擅长特定任务的不同方面

在本文中,我将使用Pytorch来实现一个MoE模型。在具体代码之前,让我们先简单介绍一下混合专家的体系结构。

MoE架构

MoE由两种类型的网络组成:(1)专家网络和(2)门控网络。

专家网络:专家网络是专有模型,每个模型都经过训练,在数据的一个子集中表现出色。MoE的理念是拥有多名优势互补的专家,确保对问题空间的全面覆盖。

门控网络:门控网络充当指挥,协调或管理个别专家的贡献。它学习(或权衡)哪个网络擅长处理哪种类型的输入。经过训练的门控网络可以评估新的输入向量,并根据专家的熟练程度将处理责任分配给最合适的专家或专家组合。门控网络根据专家的输出与当前输入的相关性动态调整其权重,确保定制响应。

上图显示了MoE中的处理流程。混合专家模型的优点在于它的简单。通过学习复杂的问题空间以及专家在解决问题时的反应,MoE模型有助于产生比单个专家更好的解决方案。门控网络作为一个有效的管理者,评估情景并将任务传递给最佳专家。当新数据输入时,模型可以通过重新评估专家对新输入的优势来适应,从而产生灵活的学习方法。

MoE为部署机器学习模型提供了巨大的好处。以下是两个显著的好处。

MoE的核心优势在于其专家网络的多元化和专业化。MoE的设置能够以单一模型可能难以达到的精度处理多方面的问题。

MoE具有固有的可伸缩性。随着任务复杂性的增加,可以在不改变其他专家模型的情况下将更多专家无缝地集成到系统中,扩大专业知识的范围。也就是说,MoE可以帮助将预先训练过的专家打包到机器学习系统中。

混合专家模型在许多领域都有应用,包括推荐系统、语言建模和各种复杂的预测任务。有传言称,GPT-4是由多个专家组成的。尽管我们无法确认,但类似gpt -4的模型将通过MoE方法利用多个模型的力量来提供最佳结果。

Pytorch代码

我们这里不讨论Mixtral 8x7B这种大模型中使用的MOE技术,而是我们编写一个简单的、可以应用在任何任务中的自定义MOE,通过代码我们可以了解MOE的工作原理,这样对理解MOE在大模型中的工作方式是非常有帮助的。

下面我们将一段一段地介绍PyTorch的代码实现。

导入库:

 import torchimport torch.nn as nnimport torch.optim as optim

定义专家模型:

 classExpert(nn.Module):def__init__(self, input_dim, hidden_dim, output_dim):super(Expert, self).__init__()self.layer1=nn.Linear(input_dim, hidden_dim)self.layer2=nn.Linear(hidden_dim, output_dim)defforward(self, x):x=torch.relu(self.layer1(x))returntorch.softmax(self.layer2(x), dim=1)

这里我们定义了一个简单的专家模型,可以看到它是一个2层的mlp,使用了relu激活,最后使用softmax输出分类概率。

定义门控模型:

 # Define the gating modelclassGating(nn.Module):def__init__(self, input_dim,num_experts, dropout_rate=0.1):super(Gating, self).__init__()# Layersself.layer1=nn.Linear(input_dim, 128)self.dropout1=nn.Dropout(dropout_rate)self.layer2=nn.Linear(128, 256)self.leaky_relu1=nn.LeakyReLU()self.dropout2=nn.Dropout(dropout_rate)self.layer3=nn.Linear(256, 128)self.leaky_relu2=nn.LeakyReLU()self.dropout3=nn.Dropout(dropout_rate)self.layer4=nn.Linear(128, num_experts)defforward(self, x):x=torch.relu(self.layer1(x))x=self.dropout1(x)x=self.layer2(x)x=self.leaky_relu1(x)x=self.dropout2(x)x=self.layer3(x)x=self.leaky_relu2(x)x=self.dropout3(x)returntorch.softmax(self.layer4(x), dim=1)

门控模型更复杂,有三个线性层和dropout层用于正则化以防止过拟合。它使用ReLU和LeakyReLU激活函数引入非线性。最后一层的输出大小等于专家的数量,并对这些输出应用softmax函数。输出权重,这样可以将专家的输出与之结合。

说明:其实门控网络,或者叫路由网络是MOE中最复杂的部分,因为它涉及到控制输入到那个专家模型,所以门控网络也有很多个设计方案,例如(如果我没记错的话)Mixtral 8x7B 只是取了8个专家中的top2。所以我们这里不详细讨论各种方案,只是介绍其基本原理和代码实现。

完整的MOE模型:

 classMoE(nn.Module):def__init__(self, trained_experts):super(MoE, self).__init__()self.experts=nn.ModuleList(trained_experts)num_experts=len(trained_experts)# Assuming all experts have the same input dimensioninput_dim=trained_experts[0].layer1.in_featuresself.gating=Gating(input_dim, num_experts)defforward(self, x):# Get the weights from the gating networkweights=self.gating(x)# Calculate the expert outputsoutputs=torch.stack([expert(x) forexpertinself.experts], dim=2)# Adjust the weights tensor shape to match the expert outputsweights=weights.unsqueeze(1).expand_as(outputs)# Multiply the expert outputs with the weights and# sum along the third dimensionreturntorch.sum(outputs*weights, dim=2)

这里主要看前向传播的代码,通过输入计算出权重和每个专家给出输出的预测,最后使用权重将所有专家的结果求和最终得到模型的输出。

这个是不是有点像“集成学习”

测试

下面我们来对我们的实现做个简单的测试,首先生成一个简单的数据集:

 # Generate the datasetnum_samples=5000input_dim=4hidden_dim=32# Generate equal numbers of labels 0, 1, and 2y_data=torch.cat([torch.zeros(num_samples//3),torch.ones(num_samples//3),torch.full((num_samples-2* (num_samples//3),), 2)  # Filling the remaining to ensure exact num_samples]).long()# Biasing the data based on the labelsx_data=torch.randn(num_samples, input_dim)foriinrange(num_samples):ify_data[i] ==0:x_data[i, 0] +=1  # Making x[0] more positiveelify_data[i] ==1:x_data[i, 1] -=1  # Making x[1] more negativeelify_data[i] ==2:x_data[i, 0] -=1  # Making x[0] more negative# Shuffle the data to randomize the orderindices=torch.randperm(num_samples)x_data=x_data[indices]y_data=y_data[indices]# Verify the label distributiony_data.bincount()# Shuffle the data to ensure x_data and y_data remain alignedshuffled_indices=torch.randperm(num_samples)x_data=x_data[shuffled_indices]y_data=y_data[shuffled_indices]# Splitting data for training individual experts# Use the first half samples for training individual expertsx_train_experts=x_data[:int(num_samples/2)]y_train_experts=y_data[:int(num_samples/2)]mask_expert1= (y_train_experts==0) | (y_train_experts==1)mask_expert2= (y_train_experts==1) | (y_train_experts==2)mask_expert3= (y_train_experts==0) | (y_train_experts==2)# Select an almost equal number of samples for each expertnum_samples_per_expert= \min(mask_expert1.sum(), mask_expert2.sum(), mask_expert3.sum())x_expert1=x_train_experts[mask_expert1][:num_samples_per_expert]y_expert1=y_train_experts[mask_expert1][:num_samples_per_expert]x_expert2=x_train_experts[mask_expert2][:num_samples_per_expert]y_expert2=y_train_experts[mask_expert2][:num_samples_per_expert]x_expert3=x_train_experts[mask_expert3][:num_samples_per_expert]y_expert3=y_train_experts[mask_expert3][:num_samples_per_expert]# Splitting the next half samples for training MoE model and for testingx_remaining=x_data[int(num_samples/2)+1:]y_remaining=y_data[int(num_samples/2)+1:]split=int(0.8*len(x_remaining))x_train_moe=x_remaining[:split]y_train_moe=y_remaining[:split]x_test=x_remaining[split:]y_test=y_remaining[split:]print(x_train_moe.shape,"\n", x_test.shape,"\n",x_expert1.shape,"\n",x_expert2.shape,"\n", x_expert3.shape)

这段代码创建了一个合成数据集,其中包含三个类标签——0、1和2。基于类标签对特征进行操作,从而在数据中引入一些模型可以学习的结构。

数据被分成针对个别专家的训练集、MoE模型和测试集。我们确保专家模型是在一个子集上训练的,这样第一个专家在标签0和1上得到很好的训练,第二个专家在标签1和2上得到更好的训练,第三个专家看到更多的标签2和0。

我们期望的结果是:虽然每个专家对标签0、1和2的分类准确率都不令人满意,但通过结合三位专家的决策,MoE将表现出色。

模型初始化和训练设置:

 # Define hidden dimensionoutput_dim = 3hidden_dim = 32epochs = 500learning_rate = 0.001# Instantiate the expertsexpert1 = Expert(input_dim, hidden_dim, output_dim)expert2 = Expert(input_dim, hidden_dim, output_dim)expert3 = Expert(input_dim, hidden_dim, output_dim)# Set up losscriterion = nn.CrossEntropyLoss()# Optimizers for expertsoptimizer_expert1 = optim.Adam(expert1.parameters(), lr=learning_rate)optimizer_expert2 = optim.Adam(expert2.parameters(), lr=learning_rate)optimizer_expert3 = optim.Adam(expert3.parameters(), lr=learning_rate)

实例化了专家模型和MoE模型。定义损失函数来计算训练损失,并为每个模型设置优化器,在训练过程中执行权重更新。

训练的步骤也非常简单

 # Training loop for expert 1for epoch in range(epochs):optimizer_expert1.zero_grad()outputs_expert1 = expert1(x_expert1)loss_expert1 = criterion(outputs_expert1, y_expert1)loss_expert1.backward()optimizer_expert1.step()# Training loop for expert 2for epoch in range(epochs):optimizer_expert2.zero_grad()outputs_expert2 = expert2(x_expert2)loss_expert2 = criterion(outputs_expert2, y_expert2)loss_expert2.backward()optimizer_expert2.step()# Training loop for expert 3for epoch in range(epochs):optimizer_expert3.zero_grad()outputs_expert3 = expert3(x_expert3)loss_expert3 = criterion(outputs_expert3, y_expert3)loss_expert3.backward()

每个专家使用基本的训练循环在不同的数据子集上进行单独的训练。循环迭代指定数量的epoch。

下面是我们MOE的训练

 # Create the MoE model with the trained expertsmoe_model = MoE([expert1, expert2, expert3])# Train the MoE modeloptimizer_moe = optim.Adam(moe_model.parameters(), lr=learning_rate)for epoch in range(epochs):optimizer_moe.zero_grad()outputs_moe = moe_model(x_train_moe)loss_moe = criterion(outputs_moe, y_train_moe)loss_moe.backward()optimizer_moe.step()

MoE模型是由先前训练过的专家创建的,然后在单独的数据集上进行训练。训练过程类似于单个专家的训练,但现在门控网络的权值在训练过程中更新。

最后我们的评估函数:

 # Evaluate all modelsdef evaluate(model, x, y):with torch.no_grad():outputs = model(x)_, predicted = torch.max(outputs, 1)correct = (predicted == y).sum().item()accuracy = correct / len(y)return accuracy

evaluate函数计算模型在给定数据上的精度(x代表样本,y代表预期标签)。准确度计算为正确预测数与预测总数之比。

结果如下:

 accuracy_expert1 = evaluate(expert1, x_test, y_test)accuracy_expert2 = evaluate(expert2, x_test, y_test)accuracy_expert3 = evaluate(expert3, x_test, y_test)accuracy_moe = evaluate(moe_model, x_test, y_test)print("Expert 1 Accuracy:", accuracy_expert1)print("Expert 2 Accuracy:", accuracy_expert2)print("Expert 3 Accuracy:", accuracy_expert3)print("Mixture of Experts Accuracy:", accuracy_moe)#Expert 1 Accuracy: 0.466#Expert 2 Accuracy: 0.496#Expert 3 Accuracy: 0.378#Mixture of Experts Accuracy: 0.614

可以看到

专家1正确预测了测试数据集中大约46.6%的样本的类标签。

专家2表现稍好,正确预测率约为49.6%。

专家3在三位专家中准确率最低,正确预测的样本约为37.8%。

而MoE模型显著优于每个专家,总体准确率约为61.4%。

总结

我们测试的输出结果显示了混合专家模型的强大功能。该模型通过门控网络将各个专家模型的优势结合起来,取得了比单个专家模型更高的精度。门控网络有效地学习了如何根据输入数据权衡每个专家的贡献,以产生更准确的预测。混合专家利用了各个模型的不同专业知识,在测试数据集上提供了更好的性能。

同时也说明我们可以在现有的任务上尝试使用MOE来进行测试,也可以得到更好的结果。

https://avoid.overfit.cn/post/d5c5a12aac9e48c296cace247b460b02

作者:Shahriar Hossain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_926198.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息的发送与接收

消息的发送与接收 消息的发送与接收不仅仅是在于聊天功能的实现。其实还有很多种情况也算"消息的发送与接收"。而且我们还可以通过多种方法去实现。我们可以基于实际情况来选择。 WebSocket实现 node做后端。找了好多,前端页面总是用到了jQuery&#x…

(C语言)冒泡排序

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>//实现buble_sort函数&#xff1b; void buble_sort(int arr[], int sz) {//初始化变量值&#xff1b;int i 0;//嵌套循环冒泡排序&#xff1b;//外层循环&…

【REST2SQL】10 REST2SQL操作指南

【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 【REST2SQL】05 GO 操作 达梦 数据库 【REST2SQL】06 GO 跨包接口重构代码 【REST2SQL】07 GO 操作 Mysql 数据库 【RE…

微信小程序-----全局配置与页面配置

目录 前言 全局配置文件 一、window 1. 小程序窗口的组成部分 2. window 节点常用的配置项 3. 设置导航栏的标题 4. 设置导航栏的背景色 5. 设置导航栏的标题颜色 6. 全局开启下拉刷新功能 7. 设置下拉刷新时窗口的背景色 8. 设置下拉刷新时 loading 的样式 9. 设置…

两步解决宝塔面板无法访问(无法访问或拒绝链接)

宝塔面板&#xff0c;突然无法进入&#xff0c;显示“IP拒绝链接”。 使用SSH工具登录服务器 /etc/init.d/bt defaultbt default 命令 宝塔获取登录的默认地址、用户名和登录密码&#xff1b; 重启面板服务 sudo /etc/init.d/bt初始化宝塔选项 漏刻有时

装饰者模式:打破继承限制,实现灵活的功能扩展

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 装饰者模式&#xff1a;打破继承限制&#xff0c;实现灵活的功能扩展 前言装饰者模式简介装饰者模式的工作原理实际应用java代码实现结语 前言 在软件开发中&#xff0c;我们经常面临着需求的变化和新…

rsync全面讲解

rsync 是一个常用的 Linux 应用程序&#xff0c;用于文件同步。 它可以在本地计算机与远程计算机之间&#xff0c;或者两个本地目录之间同步文件&#xff08;但不支持两台远程计算机之间的同步&#xff09;。它也可以当作文件复制工具&#xff0c;替代cp和mv命令。 它名称里面…

基础面试题整理4

1.mybatis的#{}和${}区别 #{}是预编译处理&#xff0c;${}是字符串替换#{}可以防止SQL注入&#xff0c;提高安全性 2.mybatis隔离级别 读未提交 READ UNCOMMITED&#xff1a;读到了其他事务中未提交的数据&#xff0c;造成"脏读","不可重复读","幻读&…

Python进程池multiprocessing.Pool

环境&#xff1a; 鲲鹏920:192核心 内存&#xff1a;756G python&#xff1a;3.9 python单进程的耗时 在做单纯的cpu计算的场景&#xff0c;使用单进程核多进程的耗时做如下测试&#xff1a; 单进程情况下cpu的占用了如下&#xff0c;占用一半的核心数&#xff1a; 每一步…

git 提炼笔记

1、设置用户名和邮箱&#xff08;邮箱可以不是真的&#xff09; git config --global user.name test101 // 设置用户名为 test101git config --global user.email test101test101.cn // 设置邮箱为test101test101.cn2、查看用户名和邮箱 git config --global user.name git…

【SpringBoot框架篇】35.kafka环境搭建和收发消息

kafka环境搭建 kafka依赖java环境,如果没有则需要安装jdk yum install java-1.8.0-openjdk* -y1.下载安装kafka kafka3.0版本后默认自带了zookeeper&#xff0c;3.0之前的版本需要单独再安装zookeeper,我使用的最新的3.6.1版本。 cd /usr/local wget https://dlcdn.apache.…

Redis主从架构、哨兵集群原理实战

1.主从架构简介 背景 单机部署简单&#xff0c;但是可靠性低&#xff0c;且不能很好利用CPU多核处理能力生产环境必须要保证高可用&#xff0c;一般不可能单机部署读写分离是可用性要求不高、性能要求较高、数据规模小的情况 目标 读写分离&#xff0c;扩展主节点的读能力&…

canvas绘制美队盾牌

查看专栏目录 canvas示例教程100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

STC8H8K蓝牙智能巡线小车——1. 环境搭建(基于RTX51操作系统)

1. 基本介绍 开发环境准备&#xff1a;Keil uVision5 烧录软件&#xff1a;STC-ISP&#xff08;V6.92A&#xff09; 芯片&#xff1a; STC8H8K64U-45I-LQFP64 芯片引脚&#xff1a; 2.创建项目 打开Keil&#xff0c;点击【Project】&#xff0c;选择【new uVersion proje…

快乐学Python,如何使用爬虫从网页中提取感兴趣的内容?

前面的内容&#xff0c;我们了解了使用urllib3和selenium来下载网页&#xff0c;但下载下来的是整个网页的内容&#xff0c;那我们又怎么从下载下来的网页中提取我们自己感兴趣的内容呢&#xff1f;这里就需要Python的另一个库来实现-BeautifulSoup。 BeautifulSoup 是一个 Py…

数据仓库(2)-认识数仓

1、数据仓库是什么 数据仓库 &#xff0c;由数据仓库之父比尔恩门&#xff08;Bill Inmon&#xff09;于1990年提出&#xff0c;主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料&#xff0c;透过数据仓库理论所特有的资料储存架构&#xff0c;做…

可以在微信群里使用midjourney,gpt4,gemini,文心一言4.0,且免费

免费使用gpt4和midjourney 免费使用 参考链接&#xff1a; https://chat.xutongbao.top/

【银行测试】银行项目,信用卡业务测试+常问面试(三)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 银行测试-信用卡业…

轻松识别Midjourney等AI生成图片,开源GenImage

AIGC时代&#xff0c;人人都可以使用Midjourney、Stable Diffusion等AI产品生成高质量图片&#xff0c;其逼真程度肉眼难以区分真假。这种虚假照片有时会对社会产生不良影响&#xff0c;例如&#xff0c;生成公众人物不雅图片用于散播谣言&#xff1b;合成虚假图片用于金融欺诈…

Angular系列教程之DOM操作

文章目录 引言1. ElementRef2. Renderer23. ViewChild结论 引言 在Angular中&#xff0c;DOM操作是开发Web应用程序的一个重要方面。通过对DOM进行操作&#xff0c;我们可以动态地修改页面内容、样式和元素行为。本文将详细介绍如何在Angular中进行DOM操作&#xff0c;并提供相…