GPT应用开发:运行你的第一个聊天程序

news/2024/2/25 13:04:14/文章来源:https://blog.csdn.net/bossma/article/details/135584197

本系列文章介绍基于OpenAI GPT API开发应用的方法,适合从零开始,也适合查缺补漏。

本文首先介绍基于聊天API编程的方法。

环境搭建

很多机器学习框架和类库都是使用Python编写的,OpenAI提供的很多例子也是Python编写的,所以为了方便学习,我们这个教程也使用Python。

Python环境搭建

Python环境搭建有很多种方法,我们这里需要使用 Python 3.10 的环境,如果你已经具备或者自己很清楚怎么搭建,请跳过这个小节。

Anaconda安装

Anaconda 可以简单理解为一个软件包管理器,通过它我们可以方便的管理Python运行环境。

Anaconda 的官方下载地址是:https://www.anaconda.com/download,页面如下图所示:

请注意选择你使用的操作系统,整个安装包有800多M,下载时间取决于你的网路。

Anaconda 的安装比较简单,但是安装中间还需要下载很多程序,所以需要的时间可能会久一点;另外全部安装完毕后,可能会占用5G多的硬盘空间,需要提前预留好。

Anaconda 集成了一些方便的工具,安装完成后,我们可以使用 Anaconda Navigator 来启动它们。在Windows系统下,我们可以在开始菜单中找到这个 Anaconda Navigator,就是下面图片中的这个。

JupyterLab

启动 Anaconda Navigator 后,在右边的应用列表中找到 JupyterLab。

JupyterLab 是一个Web的交互式计算窗口,能在网页中运行Python程序,可以省掉很多麻烦。

启动后,窗口界面如下所示。左边是当前用户的根目录,右边有一些功能入口,我们先不管。

我们在左侧根目录下点击右键创建一个文件夹:gptdemo,名字可以随便起,后边我们的程序都放到这里边。

然后我们双击进入 gptdemo,再点击右键创建一个 Notebook,Notebook 可以记录文字、编写代码并执行。

在左侧文件夹中双击新创建的Notebook,它会在右侧编辑区打开,在工具栏的“Cell Type”中选择“Code”,然后点击工具栏前边的加号(+),Notebook中就会自动创建一个代码Cell,这种Cell既可以运行Python代码,也可以执行各种Shell指令。

安装OpenAI包

执行下边的命令,安装openai的python sdk。

pip install --upgrade openai httpx[socks]

这个只需要安装成功一次就行了。

下图是JupyterLab中的命令执行效果演示:

代码演练

下边进入本文的重点,运行一个GPT程序。

在这个程序中,我们还是让 GPT 扮演一个善于出题的小学数学老师。

可以先把下边的代码粘贴到你的开发环境中运行一下,后面我会解释各个参数。

注意替换 api_key,没有的可以去注册一个或者找人购入一个。

from openai import OpenAIclient = OpenAI(api_key='sk-xxx')
stream = client.chat.completions.create(messages=[{"role": "system", "content": "你是一名数学老师,从事小学数学教育30年,精通设计各种数学考试题"},{"role": "user", "content": "你是谁?请以json返回"}],model='gpt-3.5-turbo-1106',max_tokens:1024,#temperature=0.1,top_p=0.3,#frequency_penalty=0.5,presence_penalty=0.2,seed=12345,#stop='30年',response_format={ "type": "json_object" },n=1,stream=True
)for chunk in stream:msg = chunk.choices[0].delta.contentif msg is not None:print(msg, end='')

我们需要先创建一个客户端:client = OpenAI(api_key='sk-xxx'),注意替换其中的 api-key。

然后我们使用 client.chat.completions.create 来创建一个聊天 Completion。Completion这个单词怎么理解呢?这有点类似搜索框中的那种联想输入,我们输入部分字符,它就会生成一组补全的查询词语列表,这个技术叫:Auto Complete。

理解Token

因为很多参数都涉及到Token的概念,所以在开始介绍参数之前,我们先来理解下 Token 这个概念。

在大模型中,模型的输入和输出实际都是Token。Token不是完全对照到单词或者字符的,大模型处理数据时,文本会被切分成单个元素或标记,也就是Token,这些Token可能是单词、字符或单词的一部分。

大模型使用Token而不是直接使用单词或字符的原因主要是效率、灵活性和性能的问题。例如大词汇表会导致模型参数数量剧增,增加内存需求和计算成本,而使用子词可以降低词汇表的大小,特别是含有大量专有名词的语料库,同时子词还可以避免单个字符携带信息可能过少,导致需要处理更长序列才能理解文本的问题。另外子词对于一些语言还具备跨语言表示的能力,子词还可以让模型更好地学习和理解单词的形态变化和复杂的词形构造规则。

比如对于这个句子:I don't like cats.

其拆分后的Token序列可能是:["I", "do", "n't", "like", "cats", "."]

注意,不同的模型可能会采用不同的切分方法。

completion参数

然后我们看下这几个参数:

  • messages:聊天的上下文,里边可以包含多条消息。GPT会针对最后一条消息,结合上下文,生成文本内容。每条消息可以设定role、name、content。
    • role:就是会话中的角色,可以选择:system(系统)、assistant(GPT)、user(用户)
    • name:用来区分同一个角色中的不同人物。
    • content:具体角色发出的消息内容。
  • model:本次会话使用的GPT模型,最新的3.5模型是 gpt-3.5-turbo-1106,训练数据截止2021年9月份,上下文窗口的最大token数为16K;最新的4模型是gpt-4-1106-preview,训练数据截止2023年4月份,上下文窗口的最大token数为128K。
  • max_tokens:本次Completion允许生成的最大token数量,token数量和字符数量实际上不是对等的,不过也可以简单的认为就是字符数量。messages中输入的token数量和生成的token数量不能超过模型上下文窗口的最大token数量。
  • temperature:生成时对token进行采样的温度,取值范围为 0-2 的float,默认值为1。值越小输出越确定,值越大输出越随机,可能会跳出上下文约束,甚至输出不可读的乱七八糟字符。
  • top_p:temperature 的替代方法,称为核采样。取值范围为 0-1 的float,默认值为1。模型考虑具有top_p概率质量的标记的结果,比如 0.1 表示仅考虑概率最大的前10%的token。注意不要同时更改 temperature 和 top_p。
  • frequency_penalty:频率惩罚,用于降低生成重复token的可能性,它基于相关token出现的频率产生影响。取值范围 -2.0 到 2.0 ,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • presence_penalty:存在惩罚,也是用于降低生成重复token的可能性,和频率惩罚相比,它跟踪的是相关token有没有出现过至少一次。取值范围 -2.0 到 2.0,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • seed:这个参数是为了尽可能的提高输出的确定性。使用相同的种子和相同的其它参数,会尽可能的输出相同的结果。
  • stop:GPT生成文字时,遇到这些字符会停止继续生成。最多4个字符。
  • response_format:生成文本的格式。虽然我们也可以在聊天内容中直接要求以某种格式返回,但是这是没有保障的,也可能返回别的格式,但是如果再加上这个参数,就可以确保生成内容的格式了。
  • n:一次返回几条结果,默认为1。使用时建议设置 stream=false,可以从 choices 中获取多条结果。
  • stream:流式输出与否,一般都采用流式输出,看着比较像真人说话。

看下这个运行效果吧:


以上就是本文的主要内容,GPT编程是不是挺简单的?!

后续我还会继续分享图片、插件、语音等API的使用方法。

如需GPT账号、加入学习陪伴群,推荐加入小册:大模型应用开发 | API 实操

关注萤火架构,加速技术提升!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_925434.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何利用小程序介绍公司品牌形象?

企业小程序的建设对于现代企业来说已经成为了一项必不可少的工作。随着移动互联网的快速发展,越来越多的职场人士和创业老板希望通过小程序来提升企业形象,增强与用户的互动,实现更好的商业效果。在这个过程中,使用第三方制作平台…

数据结构排序算法总结

直接插入排序 折半插入排序 希尔排序 冒泡排序 快速排序 选择排序 堆排序 归并排序 1.直接插入排序 前面的有序 后面的无序&#xff0c;无序元素插入到前面的有序列表中 int len nums.length, i 1, j 0;for(i1; i<len; i){int ele nums[i];// 插入过程for(j i…

【上分日记】第379场周赛(分类讨论 + 数学 + 前缀和)

文章目录 前言正文1.3000. 对角线最长的矩形的面积2.3001. 捕获黑皇后需要的最少移动次数3.3002. 移除后集合的最多元素数3.3003. 执行操作后的最大分割数量 总结尾序 前言 终于考完试了&#xff0c;考了四天&#xff0c;也耽搁了四天&#xff0c;这就赶紧来补这场周赛的题了&a…

gitee完整使用教程,创建项目并上传

目录 一 什么是gitee 二 安装Git 三 登录gitee&#xff0c;生成密钥 四 配置SSH密钥 五 创建项目 六 克隆仓库到本地 七 关联本地工程到远程仓库 八 添加文件 九 异常处理 十 删除仓储 十一 git常用命令 一 什么是gitee gitee是开源中国推出的基于git的代码托管服务…

3种ffmpeg-web端视频直播推流方案

ffmpeg-web端视频直播推流方案 记录了三种 ffmpeg 工具进行推流的方法&#xff0c;并在web端实现直播效果。 一. node-media-server ffmpeg 推流rtmp 安装node-media-server依赖,新建app.js运行 npm install node-media-server -g const NodeMediaServer require(node-…

e2studio开发三轴加速度计LIS2DW12(4)----测量倾斜度

e2studio开发三轴加速度计LIS2DW12.4--测量倾斜度 概述视频教学样品申请源码下载计算倾斜角度工作原理单轴倾斜检测双轴倾斜检测三轴倾斜检测通信模式管脚定义IIC通信模式速率新建工程工程模板保存工程路径芯片配置工程模板选择时钟设置UART配置UART属性配置设置e2studio堆栈e…

004 Golang-channel-practice 左右括号匹配

第四题 左右括号打印 一个协程负责打印“&#xff08;”&#xff0c;一个协程负责打印“&#xff09;”&#xff0c;左右括号的数量要匹配。在这道题目里&#xff0c;我在main函数里进行了一个死循环。会产生一个随机数&#xff0c;随机数就是接下来要打印的左括号的数量。 例…

spring boot mybatis plus mapper如何自动注册到spring bean容器

##Import(AutoConfiguredMapperScannerRegistrar.class) ##注册MapperScannerConfigurer ##MapperScannerConfigurer.postProcessBeanDefinitionRegistry方法扫描注册mapper ##找到mapper候选者 ##过滤mapper 类 候选者 ##BeanDefinitionHolder注册到spring 容器

竞赛保研 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…

c++泛型算法相关笔记

一. 泛型算法 1. 前言 泛型算法&#xff1a;可以支持多种类型的算法 此处主要来讨论怎么使用标准库中定义的泛型算法<algorithm>, numeric, ranges. 在引入泛型算法之前&#xff0c;还有一种是方法的形式&#xff0c;比如说std::sort 和std::list::sort&#xff0c;前者…

微信小程序上传并显示图片

实现效果&#xff1a; 上传前显示&#xff1a; 点击后可上传&#xff0c;上传后显示&#xff1a; 源代码&#xff1a; .wxml <view class"{{company_logo_src?blank-area:}}" style"position:absolute;top:30rpx;right:30rpx;height:100rpx;width:100rp…

力扣67. 二进制求和算法

一、【写在前面】 这道题需要&#xff0c;给你两个字符串比如 a "1010", b "1011"答案是&#xff1a;"10101" 然后需要你给出计算结果&#xff0c;那么我们很容易想到两种做法 1. 调库做法&#xff1a;直接转化为整数&#xff0c;然后用内…

在CentOS上设置和管理静态HTTP网站的版本控制

在CentOS上设置和管理静态HTTP网站的版本控制是一项重要的任务&#xff0c;它可以帮助您跟踪和回滚对网站所做的更改&#xff0c;确保数据的一致性和完整性。以下是在CentOS上设置和管理静态HTTP网站的版本控制的步骤&#xff1a; 安装版本控制系统在CentOS上安装Git或其他版本…

K8S--Ingress的作用

原文网址&#xff1a;K8S--Ingress的作用-CSDN博客 简介 本文介绍K8S的Ingress的作用。 ----------------------------------------------------------------------------------------------- 分享Java真实高频面试题&#xff0c;吊打面试官&#xff1a; Java后端真实面试题…

[后端] 微服务的前世今生

微服务的前世今生 整体脉络: 单体 -> 垂直划分 -> SOA -> micro service 微服务 -> services mesh服务网格 -> future 文章目录 微服务的前世今生单一应用架构特征优点&#xff1a;缺点&#xff1a; 垂直应用架构特征优点缺点 SOA 面向服务架构特征优点缺点 微服…

STM32快速复制MX25L1606E系列Flash

去年做了一个使用RS485对PIC18F45K80系列单片机进行在线升级的程序&#xff0c;如果是小批量的出厂烧录程序和升级验证&#xff08;出厂前肯定要测试单片机是否能正常读写Flash&#xff09;是可以的&#xff0c;但是后来产品订单量很大&#xff0c;生产线的烧录及升级验证就很缓…

Android Retrofit使用详情

一、 Retrofit是什么 Retrofit是Android用来接口请求的网络框架&#xff0c;内部是基于OkHttp实现的&#xff0c;retrofit负责接口请求的封装&#xff0c;retrofit可以直接将接口数据解析为Bean类、List集合等&#xff0c;直接简化了中间繁琐的数据解析过程 二、 Retrofit的简单…

使用 Apache POI 更新/覆盖 特定的单元格

使用 Apache POI 更新特定的单元格 一. 需求二. 实现三. 效果 一. 需求 将以下表中第4行&#xff0c;第4列的单元格由“张宇”更新为“汤家凤”&#xff0c;并将更行后的结果写入新的Excel文件中&#xff1b; 二. 实现 使用Apache POI&#xff0c;可以精确定位到需要更改的单…

stm32学习笔记:USART串口通信

1、串口通信协议&#xff08;简介软硬件规则&#xff09; 全双工&#xff1a;打电话。半双工&#xff1a;对讲机。单工&#xff1a;广播 时钟&#xff1a;I2C和SPI有单独的时钟线&#xff0c;所以它们是同步的&#xff0c;接收方可以在时钟信号的指引下进行采样。串口、CAN和…

Picturesocial | 开发实践:如何在15分钟内将应用容器化

在常见的软件架构体系中&#xff0c;容器无疑是一个技术热点。有些开发者在工作中熟练使用容器技术&#xff0c;有些可能刚刚开始容器之旅。 面对容器使用经验不同的各类开发者&#xff0c;我们希望通过这个系列文章&#xff0c;由浅入深地介绍如何使用容器技术来构建&#xf…