基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

news/2024/5/19 7:41:28/文章来源:https://blog.csdn.net/qq_42589613/article/details/137334927

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

基本功能演示

在这里插入图片描述

摘要:乳腺癌是女性中最常见的癌症之一,其诊断与治疗成效在很大程度上依赖于肿瘤的早期发现和准确分类。乳腺癌智能检测分割与诊断系统的引入,通过精确的图像分析技术,可以大大提高肿瘤检测的速度和准确性,这对于提升乳腺癌患者的治疗效果和生存率具有至关重要的意义。本文基于YOLOv8深度学习框架,通过780张乳腺超声图片,训练了一个进行乳腺癌肿瘤目标分割模型可以检测分割出乳腺癌肿瘤的具体位置,并判断肿瘤是良性还是恶性。最终基于此模型开发了一款带UI界面的乳腺癌智能检测分割与诊断系统,可用于实时检测场景中的乳腺癌智能检测与诊断,也更加方便的进行功能展示。该系统是基于pythonPyQT5开发的,支持图片、批量图片、视频以及摄像头进行目标检测分割,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)检测结果保存
  • 二、目标分割模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 模型推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

乳腺癌是女性中最常见的癌症之一,其诊断与治疗成效在很大程度上依赖于肿瘤的早期发现和准确分类。然而,传统的诊断方法需要高度依赖医生的经验和专业知识,这一过程可能存在耗时久、误诊率高等问题。乳腺癌智能检测分割与诊断系统的引入,通过精确的图像分析技术,可以大大提高肿瘤检测的速度和准确性,这对于提升乳腺癌患者的治疗效果和生存率具有至关重要的意义

乳腺癌智能检测分割与诊断系统的应用场景包括
医院日常诊断:辅助放射科医生快速检测和诊断乳腺病变,提升日常诊疗效率。
远程医疗服务:对于偏远地区的患者,可通过远程传输超声图像,让专家在异地进行分析和诊断。
乳腺癌筛查项目:在大规模的乳腺癌筛查计划中,自动识别和分割肿瘤,提高筛查的覆盖率和精确度。
医学研究:为研究人员提供精确的乳腺肿瘤图像资料,推动乳腺癌机理和治疗方法的研究。
医生培训与教育:作为医学生和专业医生的教育工具,帮助他们更好地理解肿瘤的形态特征。

总结来说,乳腺癌智能检测分割与诊断系统对于医疗辅助具有重要作用。它不仅能提高乳腺癌的早期发现率和诊断准确性,还能帮助医疗机构优化资源配置,降低运营成本,最终提升整个医疗行业的服务水平。随着医疗技术的不断发展,这类系统未来将在乳腺癌治疗领域扮演更加重要的角色,大幅提高患者的生存率和生活质量。

博主通过搜集乳腺癌肿瘤的相关超声图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的乳腺癌智能检测分割与诊断系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

检测结果说明:
在这里插入图片描述
诊断结果区域:分别用'绿色'、‘黄色’、‘红色’背景代表‘正常’、‘良性’、‘恶性’这3种类别的检测结果
显示效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行乳腺癌肿瘤的检测与分割,并判断肿瘤类型:['良性', '恶性'],在诊断结果区域显示['正常'、'良性', '恶性']这3种诊断结果;
2. 支持图片、图片批量、视频及摄像头进行检测分割;
3. 可显示总分割面积占比以及单个目标的分割面积占比
4. 界面可实时显示目标位置分割结果分割面积占比置信度用时等信息;
5. 结果保存:支持图片视频摄像头分割结果保存

界面参数设置说明

在这里插入图片描述

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容

IoU:全称为Intersection over
Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片选项的功能效果如下:
在这里插入图片描述

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。
4.点击表格中的指定行,界面会显示该行表格所写的信息内容。
注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:
在这里插入图片描述

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频
2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。
视频检测演示:
在这里插入图片描述

视频保存演示:
在这里插入图片描述

视频检测保存结果如下:
在这里插入图片描述

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头
2.点击保存按钮,可以进行摄像头实时图像的检测结果保存
摄像头检测演示:
在这里插入图片描述

摄像头保存演示:
在这里插入图片描述

摄像头检测保存结果如下:
在这里插入图片描述

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:
在这里插入图片描述

二、目标分割模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
YOLO各版本性能对比:
在这里插入图片描述
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于乳腺癌肿瘤相关超声图片,并使用Labelme标注工具对每张图片中的分割结果及类别进行标注。一共包含780张图片,其中训练集包含624张图片验证集包含156张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

数据集的各类别具体分布如下所示:
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集、验证集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\3.SegmentProgram\BreastCancerSeg\datasets\Data\train
val: D:\2MyCVProgram\3.SegmentProgram\BreastCancerSeg\datasets\Data\valnc: 2
names: ['benign', 'malignant']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')if __name__ == '__main__':# 训练模型配置文件路径yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-seg.yaml'# 数据集配置文件路径data_yaml_path = 'datasets/Data/data.yaml'# 官方预训练模型路径pre_model_path = "yolov8n-seg.pt"# 加载预训练模型model = YOLO(yolo_yaml_path).load(pre_model_path)# 模型训练model.train(data=data_yaml_path, epochs=150, batch=4)

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)、动态特征损失(dfl_loss)以及分割损失(seg_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
分割损失(seg_loss):预测的分割结果与标定分割之前的误差,越小分割的越准确;
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP。

定位结果的PR曲线如下:
在这里插入图片描述

分割结果的PR曲线如下:
在这里插入图片描述

从上面图片曲线结果可以看到:定位的平均精度为0.739,分割的平均精度为0.737,结果还是不错的。

4. 模型推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/benign (9).png"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='segment')
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款乳腺癌智能检测分割与诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存。

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括环境配置文档说明、python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的乳腺癌智能检测分割与诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1045551.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚拟网络设备的真正使命:实现有控制的通信

在数字化时代📲,网络安全🔒成为了企业和个人防御体系中不可或缺的一部分。随着网络攻击的日益复杂和频繁🔥,传统的物理网络安全措施已经无法满足快速发展的需求。虚拟网络设备🖧,作为网络架构中…

一起学习python——基础篇(5)

今天讲一下python的数据类型。 数据类型主要分为文本类型、数值类型、序列类型、映射类型、集合类型、布尔类型、二进制类型六大类型。 文本类型:str 数值类型: int, float, complex 序列类型: list, tuple, range 映射类型:…

【数据结构与算法】搜索算法(深度优先搜索 DFS和广度优先搜索 BFS)以及典型算法例题

目录 搜索算法(深度优先搜索DFS和广度优先搜索BFS)以及典型算法例题深度优先搜索 (Depth First Search 简称 DFS)DFS 的设计步骤深度优先搜索(DFS)算法例题例题一:N皇后问题例题二:路…

SQL注入sqli_labs靶场第五、六题

第五题 根据报错信息,判断为单引号注入 没有发现回显点 方法:布尔盲注(太耗时,不推荐使用) 1)猜解数据库名字:(所有ASCII码值范围:0~127) ?id1 and length…

成功解决> 错误: 无效的源发行版:17

运行项目的时候出现下面的报错: Execution failed for task ‘:device_info_plus:compileDebugJavaWithJavac’. 错误: 无效的源发行版:17 原因:没有设置好自己项目的JDK版本 解决:1.检查自己项目的JDK版本 将自己的项目改为JDK 1…

MySQL高级(索引分类-聚集索引-二级索引)

目录 1、主键索引、唯一索引、常规索引、全文索引 2、 聚集索引、二级索引 3、回表查询 4、通过id查询和通过name查询那个执行效率高? 5、 InnoDB主键索引的 B tree 高度为多高呢? 1、主键索引、唯一索引、常规索引、全文索引 在MySQL数据库&#xff0c…

C++的stack和queue类(一):适配器模式、双端队列与优先级队列

目录 基本概念 stack的使用 queue的使用 适配器模式 stack.h test.cpp 双端队列-deque 仿函数 优先队列 priority_queue的使用 queue.h文件 stack.h文件 test.cpp文件 日期类的比较 商品的比较 结论 基本概念 1、stack和queue不是容器而是容器适配器&…

性能优化原则

相关链接:【运行环境】加载资源的形式 性能优化 1 性能优化原则 多使用内存、缓存或其他方法 减少CPU计算量,减少网络加载耗时 (适用于所有编程的性能优化----空间换时间) 2 从何入手 性能优化-让加载更快 减少资源体积&#x…

每日一题 — 最大连续 1 的个数III

解法一:暴力枚举 先定义left和right双指针,left先固定在起始位置,遍历right当值等于1的时候,直接跳过,等于0的时候,zero计数器加一当zero等于k的时候,就开始记录此时最大长度是多少然后left加一…

深度剖析:网络安全中的红蓝对抗策略

红蓝对抗 红蓝对抗服务方案 在蓝队服务中,作为攻击方将开展对目标资产的模拟入侵,寻找攻击路径,发现安全漏洞和隐患。除获取目标系统的关键信息(包括但不限于资产信息、重要业务数据、代码或管理员账号等)外&#x…

Python | 超前滞后分析

Nino SST Indices (Nino 12, 3, 3.4, 4; ONI and TNI) 有几个指标用于监测热带太平洋,所有这些指标都是基于海表温度(SST)异常在一个给定的区域的平均值。通常,异常是相对于30年的周期来计算的。厄尔尼诺3.4指数(Nio 3.4 index)和海洋厄尔尼诺指数(Ocea…

Chrome谷歌下载入口

​hello,我是小索奇 发现好多人说谷歌浏览器在哪里下载呀,哪里可以找到? 你可能会心想,一个浏览器你还不会下载啊? 还真是,有很多伙伴找不到下载入口,为什么呢? Bing进行搜索&am…

java程序 .exe启动nginx防止重复启动,已解决

java代码生成好的.exe启动nginx服务程序 根据nginx占用端口来解决nginx服务重复启动问题(下面代码了解代码逻辑后根据自己的业务需求修改即可) 代码: package org.example;import javax.swing.*; import java.awt.*; import java.io.*; …

C#/WPF 使用开源Wav2Lip做自己的数字人(无需安装环境)

实现效果 Speaker Wav2Lip概述 2020年,来自印度海德拉巴大学和英国巴斯大学的团队,在ACM MM2020发表了的一篇论文《A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild 》,在文章中,他们提出一个叫做Wa…

ChatGPT 4.0报错 :“Hmm…something seems to have gone wrong.”

ChatGPT报错,GPT-3.5模型正常,GPT-4.0报错:“Hmm…something seems to have gone wrong.” 说明:嗯…好像出了什么问题。 原因: 部分用户在使用GPT-3.5模型时提问正常,GPT-4.0模型提问时,出现这…

Open CASCADE学习|求曲面的参数空间

在三维空间中,任意的曲面都可以通过特定的方法映射到一个二维参数平面上,从而对其进行详细的几何分析和处理。首先,我们需要从三维模型中提取出特定的曲面,这通常被称为“Face”。一个face可以被视为三维空间中的一个封闭区域&…

xss.pwnfunction-Ah That‘s Hawt

<svg/onloadalert%26%2340%3B1%26%2341%3B> <svg/>是一个自闭合形式 &#xff0c;当页面或元素加载完成时&#xff0c;onload 事件会被触发&#xff0c;从而可以执行相应的 JavaScript 函数

【日期】获取当天以及未来三天的日期和周几

// 获取当天以及未来三天的日期和周几getDates() {const today new Date();const dayOfWeek ["星期日", "星期一", "星期二", "星期三", "星期四", "星期五", "星期六"];const todayDate today.toDa…

专业测评:哪个平台提供大数据信用风险检测?

在贷款申请过程中&#xff0c;大数据信用评估变得越来越重要。许多人对此感到困惑&#xff0c;不清楚如何获取自己的大数据信用风险等级。本文将为您解答疑惑&#xff0c;介绍如何正确地查询和理解大数据信用报告。 市场上的大数据信用报告查询服务乱象 目前&#xff0c;市场上…

网工内推 | 安全运维、服务工程师,软考中级、CISP优先,六险一金

01 华成峰科技 招聘岗位&#xff1a;安全运维工程师 职责描述&#xff1a; 1、负责安全产品的运维管理&#xff0c;包括设备升级变更、策略配置优化、设备巡检等&#xff1b; 2、负责7*24小时安全监控与应急响应&#xff0c;包括态势感知日志监测、安全事件分析及处置等&#…