Mysql锁与MVCC

news/2024/5/25 11:06:04/文章来源:https://blog.csdn.net/qq_31906785/article/details/136671621

文章目录

  • Mysql锁的类型
  • 锁使用
  • MVCC
    • 快照读和当前读
    • 读视图【Read View】
    • 串行化的解决
  • exlpain字段解析
  • ACID的原理
  • 日志
  • 引擎
  • 整合SpringBoot
  • 博客记录


Mysql锁的类型

MySQL中有哪些锁:

  1. 乐观锁(Optimistic Locking):假设并发操作时不会发生冲突,只在提交事务时检查数据是否被其他事务修改过。常用于读多写少的场景。

  2. 悲观锁(Pessimistic Locking):假设并发操作时会发生冲突,因此在操作期间持有锁来避免冲突。常用于写多读少的场景。

  3. 全局锁(Global Lock):对整个数据库实例加锁,限制除了超级用户外的所有查询和修改操作。一般用于备份、恢复等操作。

  4. 表级锁(Table Lock):对整个表加锁,其他连接无法修改或读取该表的数据,但可以对其他表进行操作。

  5. 意向共享锁(Intention Shared Lock):表级锁的辅助锁,表示事务要在某个表或页级锁上获取共享锁。

  6. 意向排它锁(Intention Exclusive Lock):表级锁的辅助锁,表示事务要在某个表或页级锁上获取排它锁。

  7. 页级锁(Page Lock):对数据页(通常是连续的几个行)加锁,控制并发事务对该页的访问。适用于数据较大且并发量较高的场景。

  8. 行级锁(Row Lock):对单个行加锁,只锁定需要修改的数据行,其他行可以被同时修改或读取。并发性高,但锁管理较复杂。

  9. 记录锁(Record Lock):行级锁的特定类型,锁定单个行,确保其他事务无法同时修改或读取该行。

  10. 共享锁(Shared Lock):也称为读锁,多个事务可以同时持有共享锁并读取数据,但不能修改数据。适用于同时读取同一数据的场景。

  11. 排它锁(Exclusive Lock):也称为写锁,事务持有排它锁时,其他事务无法同时持有共享锁或排它锁,用于保护数据的写操作。

  12. 间隙锁(Gap Lock):锁定一个范围的键,但不包括这些键的实际值。用于防止其他事务在范围内插入数据。

  13. 临建锁(Metadata Lock):锁定数据库对象的元数据,如表结构,用于保证数据定义的一致性。

各种锁解析

锁使用

使用方式:
乐观锁示例:

悲观锁:
悲观锁的实现通常通过使用SELECT … FOR UPDATE或使用LOCK IN SHARE MODE语句来加锁。

-- 事务1:查询并修改订单状态
START TRANSACTION;
-- 查询订单状态,并持有排它锁
SELECT order_id, status FROM orders WHERE order_id = 1 FOR UPDATE;
-- 执行一些业务逻辑判断...
-- 修改订单状态
UPDATE orders SET status = 'completed' WHERE order_id = 1;
COMMIT;

全局锁:

-- 事务1:加全局锁
FLUSH TABLES WITH READ LOCK;
-- 执行一些需要全局锁的操作...
-- 解除全局锁
UNLOCK TABLES;

表级锁的使用:

-- Session 1
START TRANSACTION;
-- 在Session 1中加共享锁
#显式上锁(手动)
lock table tableName read;//读锁
lock table tableName write;//写锁
#隐式上锁(默认,自动加锁自动释放
insertupdatedelete //上写锁
-- 解锁
UNLOCK TABLES;
COMMIT;

InnoDB引擎的页级锁的示例

-- Session 1
START TRANSACTION;
-- 获取某个数据页的共享锁
SELECT * FROM products WHERE id = 1 LOCK IN SHARE MODE;
-- 执行一些只读操作
-- 解锁
COMMIT;

行级锁:

-- Session 1
START TRANSACTION;
-- 在Session 1中对某个行加共享锁
SELECT * FROM products WHERE id = 1 FOR SHARE;
-- 执行一些只读操作,例如SELECT语句,可以读取被共享锁保护的行
-- 解锁
COMMIT;

共享锁:

-- Session 1
START TRANSACTION;
-- 在Session 1中对某个行加共享锁
SELECT * FROM products WHERE id = 1 FOR SHARE;
-- 执行一些只读操作,例如SELECT语句,可以读取被共享锁保护的行
-- 解锁
COMMIT;

排它锁:

-- Session 1
START TRANSACTION;
-- 在Session 1中对某个行加排它锁
SELECT * FROM products WHERE id = 1 FOR UPDATE;
-- 执行一些修改操作,例如UPDATE、INSERT、DELETE等
-- 解锁
COMMIT;

意向共享锁:

-- Session 1
START TRANSACTION;
-- 在Session 1中获取意向共享锁
LOCK TABLES products INTENTIONAL READ;
-- 执行一些只读操作,例如SELECT语句,对表进行读操作
-- 解锁
UNLOCK TABLES;

意向排它锁:

-- Session 1
START TRANSACTION;-- 在Session 1中获取意向排它锁
LOCK TABLES products INTENTIONAL WRITE;-- 执行一些修改操作,例如UPDATE、INSERT、DELETE等-- 解锁
UNLOCK TABLES;

间隙锁:

-- Session 1
START TRANSACTION;
-- 在Session 1中使用范围查询,并对查询结果的间隙加锁
SELECT * FROM products WHERE price BETWEEN 10 AND 20 FOR UPDATE;
-- 执行一些需要对查询结果进行修改的操作,例如UPDATE、DELETE等
-- 解锁
COMMIT;

临建锁:

-- Session 1
SELECT GET_LOCK('my_lock', 10);-- 执行一些需要加锁的操作SELECT RELEASE_LOCK('my_lock');

记录锁:

-- Session 1
START TRANSACTION;-- 获取某个记录的共享锁
SELECT * FROM products WHERE id = 1 FOR SHARE;-- 执行一些读操作-- 释放锁
COMMIT;-- Session 2
START TRANSACTION;-- 获取某个记录的排他锁
SELECT * FROM products WHERE id = 1 FOR UPDATE;-- 执行一些写操作-- 释放锁
COMMIT;

锁使用详细示例
锁解析及使用-微信

MVCC

MVCC(Mutil-Version Concurrency Control),多版本并发控制。是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问。用于支持读已提交(RC)和可重复读(RR)隔离级别的实现

数据库通过加锁,可以实现事务的隔离性,串行化隔离级别就是加锁实现的,但是加锁会降低数据库性能。
因此,数据库引入了MVCC多版本并发控制,在读取数据不用加锁的情况下,实现读取数据的同时可以修改数据,修改数据时同时可以读取数据。

MVCC主要是用来解决【读-写】冲突的无锁并发控制,可以解决以下问题:

在并发读写数据时,可以做到在读操作时不用阻塞写操作,写操作不用阻塞读操作,提高数据库并发读写的性能。
可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决【写-写】引起的更新丢失问题。

一般数据库中都会采用以上MVCC与锁的两种组合来解决并发场景的问题,以此最大限度的提高数据库性能。

MVCC + 悲观锁:MVCC解决读-写冲突,悲观锁解决写-写冲突。
MVCC + 乐观锁:MVCC解决读-写冲突,乐观锁解决写-写冲突。

在InnoDB存储引擎,针对每行记录都有固定的两个隐藏列【DB_TRX_ID】【DB_ROLL_PTR】以及一个可能存在的隐藏列【DB_ROW_ID】。

隐式字段描述是否必须存在
DB_TRX_ID事物Id,也叫事物版本号,占用6byte的标识,事务开启之前,从数据库获得一个自增长的事务ID,用其判断事务的执行顺序
DB_ROLL_PTR占用7byte,回滚指针,指向这条记录的上一个版本的undo log记录,存储于回滚段(rollback segment)中
DB_ROW_ID隐含的自增ID(隐藏主键),如果表中没有主键和非NULL唯一键时,则会生成一个单调递增的行ID作为聚簇索引

MVCC实际上是使用的update undo log 实现的快照读。

当事务对某一行数据进行改动时,会产生一条Undo日志,多个事务同时操作一条记录时,就会产生多个版本的Undo日志,这些日志通过回滚指针(DB_ROLL_PTR)连成一个链表,称为版本链。

MVCC能否解决幻读问题:
首先可以明确的是,MVCC在快照读的情况下可以解决幻读问题,但是在当前读的情况下是不能解决幻读的。

快照读和当前读

快照读【Consistent Read】

也叫普通读,读取的是记录数据的可见版本(可能是过期的数据),不加锁,不加锁的普通select语句都是快照读,即不加锁的非阻塞读。
快照读的执行方式是生成 ReadView,直接利用 MVCC 机制来进行读取,并不会对记录进行加锁。

如下语句:

select * from tableName;

当前读
也称锁定读【Locking Read】,读取的是记录数据的最新版本,并且需要先获取对应记录的锁,并且当前读返回的记录都会加上锁,保证其他事务不会再并发的修改这条记录。update、insert、delete 都是当前读。排它锁。如下语句:

SELECT * FROM student LOCK IN SHARE MODE;  # 共享锁
SELECT * FROM student FOR UPDATE; # 排他锁
INSERT INTO student values ...  # 排他锁
DELETE FROM student WHERE ...  # 排他锁
UPDATE student SET ...  # 排他锁

当前读每次都会重新生成一个Read View,新增、删除、修改、排他锁、共享锁都是当前读。

当前读状态下可以解决幻读问题

读视图【Read View】

Read View提供了某一时刻事务系统的快照,主要是用来做可见性判断, 里面保存了对本事务不可见的其他活跃事务

当事务在开始执行的时候,会产生一个读视图(Read View),用来判断当前事务可见哪个版本的数据,即可见性判断
实际上在innodb中,每个SQL语句执行前都会生成一个Read View

Read View重要的四个属性:

  • creator_trx_id
    创建当前read view的事务ID
  • m_ids
    当前系统中所有的活跃事务的 id,活跃事务指的是当前系统中开启了事务,但还没有提交的事务;
  • m_low_limit_id
    表示在生成ReadView时,当前系统中活跃的读写事务中最小的事务id,即m_ids中的最小值。
  • m_up_limit_id
    当前系统中事务的 id 值最大的那个事务 id 值再加 1,也就是系统中下一个要生成的事务 id。

ReadView 会根据这 4 个属性,结合 undo log 版本链,来实现 MVCC 机制,决定一个事务能读取到数据那个版本。

读已提交只能读Read View中比自己小的事务ID,可重复读能读取比自己大的已提交的事务ID

在读已提交(Read Committed)的隔离级别下实现MVCC,同一个事务里面,【每一次查询都会产生一个新的Read View副本】,这样可能造成同一个事务里前后读取数据可能不一致的问题(不可重复读并发问题)。
读已提交下只要数据的事务ID不在m_ids中,就能查到当前数据

在可重复读(Repeatable read)的隔离级别下实现MVCC,【同一个事务里面,多次查询,都只会产生一个共用Read View】,所有就算期间有事务已经提交m_ids也不会改变,以此解决不可重复读的并发问题。

原博客
MVCC解析-微信

mvcc案例解析

串行化的解决

读取的是记录数据的最新版本,并且当前读返回的记录都会加上锁,保证其他事务不会再并发的修改这条记录。update、insert、delete 都是当前读。排它锁

exlpain字段解析

通过EXPLAIN,可以分析出以下结果:

表的读取顺序
数据读取操作的操作类型
哪些索引被实际使用
表之间的引用
每张表有多少行被优化器查询

在这里插入图片描述

  • id表示查询语句的序号,自动分配,顺序递增,值越大,执行优先级越高。id相同时,优先级由上而下。
  • select_type
    select_type表示查询类型,常见的有SIMPLE简单查询、PRIMARY主查询、SUBQUERY子查询、UNION联合查询、UNION RESULT联合临时表结果等。
  • table列
    table表示SQL语句查询的表名、表别名、临时表名。
  • partitions列
    partitions表示SQL查询匹配到的分区,没有分区的话显示NULL。
  • type列
    type表示表连接类型或者数据访问类型,就是表之间通过什么方式建立连接的,或者通过什么方式访问到数据的。具体有以下值,性能由好到差依次是:
    system > const > eq_ref > ref > ref_or_null > index_merge > range > index > ALL
    • system
      当表中只有一行记录,也就是系统表,是 const 类型的特列。
    • const
      表示使用主键或者唯一性索引进行等值查询,最多返回一条记录。性能较好,推荐使用。
    • eq_ref
      表示表连接使用到了主键或者唯一性索引,下面的SQL就用到了user表主键id。
    • ref
      表示使用非唯一性索引进行等值查询。
    • ref_or_null
      表示使用非唯一性索引进行等值查询,并且包含了null值的行。
    • index_merge
      表示用到索引合并的优化逻辑,即用到的多个索引。
    • range
      表示用到了索引范围查询。
    • index
      表示使用索引进行全表扫描。
    • ALL
      表示全表扫描,性能最差。
  • possible_keys列
    表示可能用到的索引列,实际查询并不一定能用到。
  • key列
    表示实际查询用到索引列。
  • key_len列
    表示索引所占的字节数。
  • ref列
    表示where语句或者表连接中与索引比较的参数,常见的有const(常量)、func(函数)、字段名。如果没用到索引,则显示为NULL。
  • rows列
    表示执行SQL语句所扫描的行数。
  • filtered列
    表示按条件过滤的表行的百分比。
  • Extra列
    表示一些额外的扩展信息,不适合在其他列展示,却又十分重要。
    • Using where
      表示使用了where条件搜索,但没有使用索引。
    • Using index
      表示用到了覆盖索引,即在索引上就查到了所需数据,无需二次回表查询,性能较好。
    • Using filesort
      表示使用了外部排序,即排序字段没有用到索引。
    • Using temporary
      表示用到了临时表,下面的示例中就是用到临时表来存储查询结果。
    • Using join buffer
      表示在进行表关联的时候,没有用到索引,使用了连接缓存区存储临时结果。
    • Using index condition
      表示用到索引下推的优化特性。

explain案例解析

explain案例解析

ACID的原理

mysql将数据存储到数据库之前都是先通过日志的方式来存储数据,因为日志的存储是顺序存储,可以通过偏移量来控制或者查找,而数据库的持久化存储,是见缝插针,这样可能最大化利用磁盘空间,存储完还需要记录数据的地址,所以相比日志存储比较慢。

    原子性的实现:通过`Redo log`和`Undo log`,重做和回滚。如果事务提交了,那么就会执行Redo log写到数据库,如果没有提交就会执行undo log。

日志

redo log和binlog区别 :

redo log是属于innoDB层面,
binlog属于MySQL Server层面的,这样在数据库用别的存储引擎时可以达到一致性的要求。

redo log是物理日志,记录该数据页更新的内容;
binlog是逻辑日志,记录的是这个更新语句的原始逻辑

redo log是循环写,日志空间大小固定;
binlog是追加写,是指一份写到一定大小的时候会更换下一个文件,不会覆盖。

binlog可以作为恢复数据使用,主从复制搭建,
redo log作为异常宕机或者介质故障后的数据恢复使用。

redo log(重做日志)和binlog(归档日志)。redo log是InnoDB存储引擎层的日志,binlog是MySQL Server层记录的日志, 两者都是记录了某些操作的日志(不是所有)自然有些重复(但两者记录的格式不同)。

引擎

MySQL5.5版本后,MySQL的默认内置存储引擎已经从MyISAM变成InnoDB

InnoDB:

  • 支持事务;

  • 行级锁定(更新数据时一般指锁定当前行):通过索引实现、全表扫描忍让时表锁、注意间隙所的影响;

  • 读写阻塞与事务的隔离级别相关;

  • 具有非常高的缓存特性(既能缓存索引、也能缓存数据);

  • 这个表和主键以组(Cluster)的方式存储、组成一颗平衡树;

  • 所有的辅助索引(secondary indexes)都会保存主键信息;

  • 支持分区、表空间类似与oracle 数据库;

  • 支持外键约束、不支持全文检索(5.5.5之前的MyISAM支持全文检索、5.5.5之后就不在支持);

  • 相对MyISAM而言、对硬件的要求比较高

MyISAM特性

  • 不支持事务

  • 表级锁定,数据更新时锁定整个表:其锁定机制是表级锁定,这虽然可以让锁定的实现成本很小但是也同时大大降低了其并发性能。

  • 读写互相阻塞:不仅会在写入的时候阻塞读取,myisam还会在读取的时候阻塞写入,但读本身并不会阻塞另外的读。

  • 只会缓存索引:MyISAM可以通过key_buffer_size缓存索引,以大大提高访问性能,减少产品IO,但是这个缓存区只会缓存索引,而不会缓存数据。

  • 读取速度较快,占用资源相对少。

  • 不支持外键约束,但支持全文索引。

整合SpringBoot

整合博客

博客记录

mvcc解析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1006448.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用---logits与标签形状指南

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用—logits与标签形状指南 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTo…

(黑马出品_高级篇_03)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

(黑马出品_高级篇_03)SpringCloudRabbitMQDockerRedis搜索分布式 微服务技术——多级缓存 今日目标1.什么是多级缓存2.JVM进程缓存2.1.导入案例2.1.1.安装MySQL2.1.1.1.准备目录2.1.1.2.运行命令2.1.1.3.修改配置 2.1.1.4.…

Redis-自动过期

1 EXPIRE、PEXPIRE:设置生存时间 用户可以通过执行EXPIRE命令或者PEXPIRE命令为键设置一个生存时间(Time To Live, TTL):键的生存时间在设置之后就会随着时间的流逝而不断地减少,当一个键的生存时间被消耗殆尽时&#…

新IDEA电脑环境设置

1.设置UTF-8 2.Maven 3.JRE选对

Java EE之wait和notify

一.多线程的执行顺序 由于多个线程执行是抢占式执行,就会导致顺序不同,同时就会导致出现问题,就比如俩个线程同时对同一个变量进行修改,我们难以预知执行顺序。 但在实际开发中,我们希望代码按一定的逻辑顺序执行&am…

Vite为什么比Webpack快

本文作者为 360 奇舞团前端开发工程师 一.引言 Vite和Webpack作为两个主流的前端构建工具,在近年来备受关注。它们的出现使得前端开发变得更加高效和便捷。然而,随着前端项目规模的不断增大和复杂度的提升,构建工具的性能优化也成为了开发者关…

四川宏博蓬达法律咨询有限公司:法律服务的行业翘楚

在当今社会,法律服务已经成为人们生活中不可或缺的一部分。随着法律意识的提高,选择一家专业、可靠的法律咨询公司显得尤为重要。四川宏博蓬达法律咨询有限公司,作为业内的佼佼者,以其卓越的服务质量和广泛的业务范围,…

基于遗传算法GA的机器人栅格地图最短路径规划,可以自定义地图及起始点(提供MATLAB代码)

一、原理介绍 遗传算法是一种基于生物进化原理的优化算法,常用于求解复杂问题。在机器人栅格地图最短路径规划中,遗传算法可以用来寻找最优路径。 遗传算法的求解过程包括以下几个步骤: 1. 初始化种群:随机生成一组初始解&…

STM32 利用FlashDB库实现在线扇区数据管理不丢失

STM32 利用FlashDB库实现在线扇区数据管理不丢失 📍FalshDB地址:https://gitee.com/Armink/FlashDB ✨STM32没有片内EEPROM这样的存储区,虽然有备份寄存器,仅可以实现对少量数据的频繁存储,但是依赖备份电源(BAT引脚&a…

vs2022的下载及安装教程(Visual Studio 2022)

vs简介 Visual Studio在团队项目开发中使用非常多且功能强大,支持开发人员编写跨平台的应用程序;Microsoft Visual C 2022正式版(VC2022运行库),具有程序框架自动生成,灵活方便的类管理,强大的代码编写等功能,可提供编…

RabbitMQ - 06 - Topic交换机

目录 控制台创建队列与交换机 编写消费者方法 编写生产者测试方法 结果 Topic交换机与Direct交换机基本一致 可参考 这篇帖子 http://t.csdnimg.cn/AuvoK topic交换机与Direct交换机的区别是 Topic交换机接收的消息RoutingKey必须是多个单词,以 . 分割 Topic交…

前端 - 笔记 - JavaScript - WebAPI【DOM + 事件类型 + Date+ 节点操作 + window + 本地存储 + 正则表达式】

前言 Web API:是一套操作 网页内容(DOM) 与 浏览器窗口(BOM) 的 对象; API:就是一些预定义好的方法,这些方法可以实现特定的功能,开发人员可以直接使用;Web …

2.案例、鼠标时间类型、事件对象参数

案例 注册事件 <!-- //disabled默认情况用户不能点击 --><input type"button" value"我已阅读用户协议(5)" disabled><script>// 分析&#xff1a;// 1.修改标签中的文字内容// 2.定时器// 3.修改标签的disabled属性// 4.清除定时器// …

ElasticSearch 学习(docker,传统方式安装、安装遇到的问题解决,)

目录 简介 什么是ElasticSearch 安装 传统方式安装 开启远程访问 Docker方式安装 Kibana 简介 安装 传统方式安装 Docker方式安装 compose方式安装 简介 什么是ElasticSearch ElasticSearch 简称 ES &#xff0c;是基于Apache Lucene构建的开源搜索引擎&#xff0c…

Parade Series - WebRTC ( < 300 ms Low Latency ) T.B.D

Parade Series - FFMPEG (Stable X64) 延时测试秒表计时器 ini/config.ini [system] homeserver storestore\nvr.db versionV20240312001 verbosefalse [monitor] listrtsp00,rtsp01,rtsp02 timeout30000 [rtsp00] typelocal deviceSurface Camera Front schemartsp ip127…

图像处理与图像分析—图像统计特性的计算(纯C语言实现灰度值显示)

根据输入的灰度图像&#xff0c;分别计算图像的均值、方差等统计特征&#xff0c;并计算图像的直方图特征并以图形方式显示图像的直方图&#xff08;用C或C语言实现&#xff09;。 学习将会依据教材图像处理与图像分析基础&#xff08;C/C&#xff09;版内容展开 在上个笔记中&…

HTTP/2的三大改进:头部压缩、多路复用和服务器推送

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Midjourney绘图欣赏系列【人物篇】(一)

Midjourney介绍 Midjourney 是生成式人工智能的一个很好的例子&#xff0c;它根据文本提示创建图像。它与 Dall-E 和 Stable Diffusion 一起成为最流行的 AI 艺术创作工具之一。与竞争对手不同&#xff0c;Midjourney 是自筹资金且闭源的&#xff0c;因此确切了解其幕后内容尚不…

微信小程序一次性订阅requestSubscribeMessage授权和操作详解

一次性订阅&#xff1a;用户订阅一次发一次通知 一、授权 — requestSubscribeMessage Taro.requestSubscribeMessage({tmplIds: [], // 需要订阅的消息模板的id的集合success (res) {console.log("同意授权", res)},fail(res) {console.log(拒绝授权, res)}})点击或…

Java爬虫-获取数据的方式之一

目录 一、jsoup的使用 1.概述 2.主要功能 3.快速入门 4.数据准备 二、Selenium 1.概述 2.使用 三、Selenium配合jsoup获取数据 四、爬虫准则 五、Seleniumjsoupmybatis实现数据保存 1.筛选需要的数据 2.创建一个表&#xff0c;准备存储数据 手写&#xff1f;不存在…