seq2seq翻译实战-Pytorch复现

news/2024/4/24 18:18:07/文章来源:https://blog.csdn.net/qq_60245590/article/details/136549068
🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、前期准备 

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import randomimport torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as Fdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

1.1 搭建语言类
 

定义了两个常量 SOS_token 和 EOS_token,其分别代表序列的开始和结束。 Lang 类,用于方便对语料库进行操作:
●word2index 是一个字典,将单词映射到索引
●word2count 是一个字典,记录单词出现的次数
●index2word 是一个字典,将索引映射到单词
●n_words 是单词的数量,初始值为 2,因为序列开始和结束的单词已经被添加

SOS_token = 0
EOS_token = 1# 语言类,方便对语料库进行操作
class Lang:def __init__(self, name):self.name = nameself.word2index = {}self.word2count = {}self.index2word = {0: "SOS", 1: "EOS"}self.n_words    = 2  # Count SOS and EOSdef addSentence(self, sentence):for word in sentence.split(' '):self.addWord(word)def addWord(self, word):if word not in self.word2index:self.word2index[word] = self.n_wordsself.word2count[word] = 1self.index2word[self.n_words] = wordself.n_words += 1else:self.word2count[word] += 1

1.2 文本处理函数

def unicodeToAscii(s):return ''.join(c for c in unicodedata.normalize('NFD', s)if unicodedata.category(c) != 'Mn')# 小写化,剔除标点与非字母符号
def normalizeString(s):s = unicodeToAscii(s.lower().strip())s = re.sub(r"([.!?])", r" \1", s)s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)return s

1.3 文件读取函数

def readLangs(lang1, lang2, reverse=False):print("Reading lines...")# 以行为单位读取文件lines = open('%s-%s.txt' % (lang1, lang2), encoding='utf-8'). \read().strip().split('\n')# 将每一行放入一个列表中# 一个列表中有两个元素,A语言文本与B语言文本pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]# 创建Lang实例,并确认是否反转语言顺序if reverse:pairs = [list(reversed(p)) for p in pairs]input_lang = Lang(lang2)output_lang = Lang(lang1)else:input_lang = Lang(lang1)output_lang = Lang(lang2)return input_lang, output_lang, pairsMAX_LENGTH = 10  # 定义语料最长长度eng_prefixes = ("i am ", "i m ","he is", "he s ","she is", "she s ","you are", "you re ","we are", "we re ","they are", "they re "
)def filterPair(p):return len(p[0].split(' ')) < MAX_LENGTH and \len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)def filterPairs(pairs):# 选取仅仅包含 eng_prefixes 开头的语料return [pair for pair in pairs if filterPair(pair)]def prepareData(lang1, lang2, reverse=False):# 读取文件中的数据input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)print("Read %s sentence pairs" % len(pairs))# 按条件选取语料pairs = filterPairs(pairs[:])print("Trimmed to %s sentence pairs" % len(pairs))print("Counting words...")# 将语料保存至相应的语言类for pair in pairs:input_lang.addSentence(pair[0])output_lang.addSentence(pair[1])# 打印语言类的信息print("Counted words:")print(input_lang.name, input_lang.n_words)print(output_lang.name, output_lang.n_words)return input_lang, output_lang, pairsinput_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))

常量 MAX_LENGTH,表示语料中句子的最大长度。

元组 eng_prefixes,包含一些英语句子的前缀。这些前缀用于筛选语料,只选择以这些前缀开头的句子

filterPair 函数用于过滤语料对。它的返回值是一个布尔值,表示是否保留该语料对。这里的条件是:两个句子的长度都不超过 MAX_LENGTH,并且输出语句(第二个句子)以 eng_prefixes 中的某个前缀开头

filterPairs 函数接受一个语料对列表,然后调用 filterPair 函数过滤掉不符合条件的语料对,返回一个新的语料对列表。

prepareData 函数是主要的数据准备函数。它调用了之前定义的 readLangs 函数来读取语言对,然后使用 filterPairs 函数按条件过滤语料对。接着,它打印读取的句子对数、过滤后的句子对数,并统计语料中的词汇量。最后,它将语料保存到相应的语言类中,并返回这些语言类对象以及过滤后的语料对。

二、Seq2Seq 模型

 2.1 编码器(Encoder)

class EncoderRNN(nn.Module):def __init__(self, input_size, hidden_size):super(EncoderRNN, self).__init__()self.hidden_size = hidden_sizeself.embedding   = nn.Embedding(input_size, hidden_size)self.gru         = nn.GRU(hidden_size, hidden_size)def forward(self, input, hidden):embedded       = self.embedding(input).view(1, 1, -1)output         = embeddedoutput, hidden = self.gru(output, hidden)return output, hiddendef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)

2.2 解码器(Decoder)

class DecoderRNN(nn.Module):def __init__(self, hidden_size, output_size):super(DecoderRNN, self).__init__()self.hidden_size = hidden_sizeself.embedding   = nn.Embedding(output_size, hidden_size)self.gru         = nn.GRU(hidden_size, hidden_size)self.out         = nn.Linear(hidden_size, output_size)self.softmax     = nn.LogSoftmax(dim=1)def forward(self, input, hidden):output         = self.embedding(input).view(1, 1, -1)output         = F.relu(output)output, hidden = self.gru(output, hidden)output         = self.softmax(self.out(output[0]))return output, hiddendef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)

三、训练

3.1 数据预处理

def indexesFromSentence(lang, sentence):return [lang.word2index[word] for word in sentence.split(' ')]# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):indexes = indexesFromSentence(lang, sentence)indexes.append(EOS_token)return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):input_tensor  = tensorFromSentence(input_lang, pair[0])target_tensor = tensorFromSentence(output_lang, pair[1])return (input_tensor, target_tensor)

3.2 训练函数

使用use_teacher_forcing 的目的是在训练过程中平衡解码器的预测能力和稳定性。以下是对两种策略的解释:
1. Teacher Forcing:在每个时间步(di循环中),解码器的输入都是目标序列中的真实标签。这样做的好处是,解码器可以直接获得正确的输入信息,加快训练速度,并且在训练早期提供更准确的梯度信号,帮助解码器更好地学习。然而,过度依赖目标序列可能会导致模型过于敏感,一旦目标序列中出现错误,可能会在解码器中产生累积的误差。
2. Without Teacher Forcing:在每个时间步,解码器的输入是前一个时间步的预测输出。这样做的好处是,解码器需要依靠自身的预测能力来生成下一个输入,从而更好地适应真实应用场景中可能出现的输入变化。这种策略可以提高模型的稳定性,但可能会导致训练过程更加困难,特别是在初始阶段。一般来说,Teacher Forcing策略在训练过程中可以帮助模型快速收敛,而Without Teacher Forcing策略则更接近真实应用中的生成场景。通常会使用一定比例的Teacher Forcing,在训练过程中逐渐减小这个比例,以便模型逐渐过渡到更自主的生成模式。
综上所述,通过使用use_teacher_forcing 来选择不同的策略,可以在训练解码器时平衡模型的预测能力和稳定性,同时也提供了更灵活的生成模式选择。

teacher_forcing_ratio = 0.5def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):# 编码器初始化encoder_hidden = encoder.initHidden()# grad属性归零encoder_optimizer.zero_grad()decoder_optimizer.zero_grad()input_length  = input_tensor.size(0)target_length = target_tensor.size(0)# 用于创建一个指定大小的全零张量(tensor),用作默认编码器输出encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)loss = 0# 将处理好的语料送入编码器for ei in range(input_length):encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)encoder_outputs[ei]            = encoder_output[0, 0]# 解码器默认输出decoder_input  = torch.tensor([[SOS_token]], device=device)decoder_hidden = encoder_hiddenuse_teacher_forcing = True if random.random() < teacher_forcing_ratio else False# 将编码器处理好的输出送入解码器if use_teacher_forcing:# Teacher forcing: Feed the target as the next inputfor di in range(target_length):decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)loss         += criterion(decoder_output, target_tensor[di])decoder_input = target_tensor[di]  # Teacher forcingelse:# Without teacher forcing: use its own predictions as the next inputfor di in range(target_length):decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)topv, topi    = decoder_output.topk(1)decoder_input = topi.squeeze().detach()  # detach from history as inputloss         += criterion(decoder_output, target_tensor[di])if decoder_input.item() == EOS_token:breakloss.backward()encoder_optimizer.step()decoder_optimizer.step()return loss.item() / target_lengthimport time
import mathdef asMinutes(s):m = math.floor(s / 60)s -= m * 60return '%dm %ds' % (m, s)def timeSince(since, percent):now = time.time()s = now - sincees = s / (percent)rs = es - sreturn '%s (- %s)' % (asMinutes(s), asMinutes(rs))def trainIters(encoder,decoder,n_iters,print_every=1000,plot_every=100,learning_rate=0.01):start = time.time()plot_losses      = []print_loss_total = 0  # Reset every print_everyplot_loss_total  = 0  # Reset every plot_everyencoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)# 在 pairs 中随机选取 n_iters 条数据用作训练集training_pairs    = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]criterion         = nn.NLLLoss()for iter in range(1, n_iters + 1):training_pair = training_pairs[iter - 1]input_tensor  = training_pair[0]target_tensor = training_pair[1]loss = train(input_tensor, target_tensor, encoder,decoder, encoder_optimizer, decoder_optimizer, criterion)print_loss_total += lossplot_loss_total  += lossif iter % print_every == 0:print_loss_avg   = print_loss_total / print_everyprint_loss_total = 0print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),iter, iter / n_iters * 100, print_loss_avg))if iter % plot_every == 0:plot_loss_avg = plot_loss_total / plot_everyplot_losses.append(plot_loss_avg)plot_loss_total = 0return plot_losses

四、训练与评估

hidden_size   = 256
encoder1      = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = DecoderRNN(hidden_size, output_lang.n_words).to(device)plot_losses = trainIters(encoder1, attn_decoder1, 100000, print_every=5000)

 

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               # 忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        # 分辨率epochs_range = range(len(plot_losses))plt.figure(figsize=(8, 3))plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_999554.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT 升级出现「我们未能验证您的支付方式/we are unable to authenticate」怎么办?

ChatGPT 升级出现「我们未能验证您的支付方式/we are unable to authenticate」怎么办&#xff1f; 在订阅 ChatGPT Plus 时&#xff0c;有时候会出现以下报错 &#xff1a; We are unable to authenticate your payment method. 我们未能验证您的支付方式。 出现 unable to a…

C语言指针的初步认识--学习笔记(3)

1. 字符指针变量 在C语言中&#xff0c;字符串通常被视为字符数组&#xff0c;但它们可以有不同的表示方式。字符指针变量存储的是字符串的地址。这意味着&#xff0c;当你有一个字符串时&#xff0c;你可以通过改变字符指针的值来改变这个字符串&#xff0c;因为你实际上改变的…

机器学习的魔法(二)超越预测的界限-揭秘机器学习的黑科技-探索监督学习中的回归和分类问题

前面我们提到了监督学习的概念&#xff0c;现在我们来回顾一下&#xff0c;什么是监督学习。 监督学习指的是&#xff1a;我们给学习算法一个数据集&#xff0c;这个数据集由正确答案组合而成&#xff0c;然后机器运用学习算法&#xff0c;算出更多的正确答案。 1、监督学习之…

【架构】五大常见架构模式,集中式架构、分布式架构、面向服务的系统架构、微服务架构等区别详解

​​​​​​​​ 一、传统上&#xff0c;信息系统体系架构有三种常见模式 &#xff08;见表 4-3): ①、集中式架构。集中式架构下所有内容采用集中建设、支持和管理的模式&#xff0c;其主体系统通常部署千数据中心&#xff0c;以消除管理物理分离的基础设施带来的困难。 在…

【Selenium】UI自动化|元素定位常见问题

1、报错NoSuchElementException——定位不到元素 分析的可能原因&#xff1a; 页面还没有加载出来&#xff0c;就对页面上的元素进行的操作 元素在iframe中&#xff0c;先要理解下frame的实质&#xff0c;frame中实际上是嵌入了另一个页面&#xff0c;而webdriver每次只能在一…

RabbitMQ篇

1.初始MQ 1.1. 同步和异步通讯 微服务间通讯有同步和异步两种方式&#xff1a; 同步通讯&#xff1a;就像打电话&#xff0c;需要实时响应。 异步通讯&#xff1a;就像发邮件&#xff0c;不需要马上回复。 两种方式各有优劣&#xff0c;打电话可以立即得到响应&#xff0c;…

Neo4j 新手教程 环境安装 基础增删改查 python链接 常用操作 纯新手向

Neo4j安装教程&#x1f680; 目前在学习知识图谱的相关内容&#xff0c;在图数据库中最有名的就是Neo4j,为了降低入门难度&#xff0c;不被网上很多华丽呼哨的Cypher命令吓退&#xff0c;故分享出该文档&#xff0c;为自己手动总结&#xff0c;包括安装环境&#xff0c;增删改查…

程序员失业,被迫开启 PlanB——成为自由职业/独立开发者的第 0 天

程序员失业&#xff0c;被迫开启 PlanB——成为自由职业/独立开发者的第 0 天 今天在逛V2EX的时候看到的一个帖子&#xff0c;程序员中年被裁&#xff0c;被迫开启独立开发这条路。 原贴如下&#xff1a; lastday, 失业啦 公司年前通知我合同到期不续签&#xff0c;今天是我…

python爬虫(3)

上一次的代码结果如下&#xff1a; 当然会有一点点不一样是正常的表现&#xff0c;因为这个图本身使用随机数rand函数做的&#xff0c;用其他两种随机函数出来的结果也不会完全相同。 继上节这次带来的是数组的重塑和转置 1、一维数组的重塑 在NumPy模块中的reshape()函数可…

redis缓存(穿透, 雪崩, 击穿, 数据不一致, 数据并发竞争 ), 分布式锁(watch乐观锁, setnx, redission)

redis的watch缓存机制 WATCH 机制原理&#xff1a; WATCH 机制&#xff1a;使用 WATCH 监视一个或多个 key , 跟踪 key 的 value 修改情况&#xff0c;如果有key 的 value 值在事务 EXEC 执行之前被修改了&#xff0c;整个事务被取消。EXEC 返回提示信息&#xff0c;表示 事务已…

【开源】JAVA+Vue.js实现高校宿舍调配管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能需求2.1 学生端2.2 宿管2.3 老师端 三、系统展示四、核心代码4.1 查询单条个人习惯4.2 查询我的室友4.3 查询宿舍4.4 查询指定性别全部宿舍4.5 初次分配宿舍 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的…

AlibabaCloud微服务:Linux 部署 Sentinel 流量控制

目录 一、实验 1.环境 2.Linux 部署 Sentinel 3. 微服务接入Sentinel配置 二、 问题 1.Linux本地启动Sentinel控制台 2.JDBC连接失败 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 系统软件版本IP备注Linuxopenjdk 1.8.0192.168.204.200 maven3.5.0nac…

go 程序被意外kill后出现僵尸进程解决方案

go 管理自身子进程(防止僵尸进程出现) 写这篇文章是因为最近有同事竟然会知道异步启动子进程&#xff0c;不会关闭&#xff0c;最后导致导致僵尸进程出现&#xff0c;而且由于子进程会随着业务的使用越开越多&#xff0c;主进程一旦被kill掉就会不得不手动一个一个kill。 大概…

pytest 教程

1. 安装pytest 目前我使用的python版本是3.10.8 pip install pytest命令会安装下面的包&#xff1a; exceptiongroup-1.2.0-py3-none-any.whl iniconfig-2.0.0-py3-none-any.whl packaging-23.2-py3-none-any.whl pluggy-1.4.0-py3-none-any.whl pytest-8.0.2-py3-none-any.…

2024阿里云服务器ECS u1实例性能测评,CPU内存、网络和存储

阿里云服务器u1是通用算力型云服务器&#xff0c;CPU采用2.5 GHz主频的Intel(R) Xeon(R) Platinum处理器&#xff0c;通用算力型u1云服务器不适用于游戏和高频交易等需要极致性能的应用场景及对业务性能一致性有强诉求的应用场景(比如业务HA场景主备机需要性能一致)&#xff0c…

JavaWeb - 3 - JavaScript(JS)

JavaScript(JS)官方参考文档&#xff1a;JavaScript 教程 JavaScript&#xff08;简称&#xff1a;JS&#xff09;是一门跨平台、面向对象的脚本语言&#xff0c;是用来控制网页行为的&#xff0c;它能使网页可交互&#xff08;脚本语言就不需要编译&#xff0c;直接通过浏览器…

基于Spring Boot+ Vue的房屋租赁系统

末尾获取源码作者介绍&#xff1a;大家好&#xff0c;我是墨韵&#xff0c;本人4年开发经验&#xff0c;专注定制项目开发 更多项目&#xff1a;CSDN主页YAML墨韵 学如逆水行舟&#xff0c;不进则退。学习如赶路&#xff0c;不能慢一步。 目录 一、项目简介 二、开发技术与环…

算法学习01:排序二分

算法学习01&#xff1a;排序&&二分 文章目录 算法学习01&#xff1a;排序&&二分前言需要记忆的模版&#xff1a;快速排序归并排序&#xff1a;整数二分&#xff1a;浮点数二分 一、排序1.快速排序2.归并排序&#xff1a; 二、二分1.整数2.浮点数 总结 前言 需要…

动态规划(算法竞赛、蓝桥杯)--树形DP积蓄程度

1、B站视频链接&#xff1a;E35 树形DP 积蓄程度_哔哩哔哩_bilibili #include <bits/stdc.h> using namespace std; const int N200010,INF0x3f3f3f3f; int h[N],to[N*2],w[N*2],ne[N*2],tot; //邻接表 int d[N]; //d[i]记录从i点向下流出的最大流量 int f[N]; //f…

Linux Ubuntu 部署SVN

最近需要在ubuntu server上部署一个svn&#xff0c;记录 不需要特定版本 如果不需要特定版本&#xff0c;这样安装就是最简单的 sudo apt update然后开始安装 sudo apt install subversion等到安装完成之后执行查看版本命令&#xff0c;如果正常输出那就没问题了 svnadmin …