3 决策树及Python实现

news/2024/4/26 15:33:30/文章来源:https://blog.csdn.net/search_129_hr/article/details/129237484

1 主要思想

1.1 数据

在这里插入图片描述

1.2 训练和使用模型

训练:建立模型(树)
测试:使用模型(树)
在这里插入图片描述
Weka演示ID3(终端用户模式)

  • 双击weka.jar
  • 选择Explorer
  • 载入weather.arff
  • 选择trees–>ID3
  • 构建树,观察结果

建立决策树流程

  • Step 1. 选择一个属性
  • Step 2. 将数据集分成若干子集
  • Step 3.1 对于决策属性值唯一的子集, 构建叶结点
  • Step 3.2 对于决策属性值不唯一的子集, 递归调用本函数

演示: 利用txt文件, 按照决策树的属性划分数据集

2 信息熵

问题: 使用哪个属性进行数据的划分?
随机变量YYY的信息熵为 (YYY为决策变量):
H(Y)=E[I(yi)]=∑i=1np(yi)log⁡1p(yi)=−∑i=1np(yi)log⁡p(yi),H(Y) = E[I(y_i)] = \sum_{i=1}^n p(y_i)\log \frac{1}{p(y_i)} = - \sum_{i=1}^n p(y_i)\log p(y_i), H(Y)=E[I(yi)]=i=1np(yi)logp(yi)1=i=1np(yi)logp(yi),
其中 0log⁡0=00 \log 0 = 00log0=0.
随机变量YYY关于XXX的条件信息熵为(XXX为条件变量):
H(Y∣X)=∑i=1mp(xi)H(Y∣X=xi)=−∑i,jp(xi,yj)log⁡p(yj∣xi).\begin{array}{ll} H(Y | X) & = \sum_{i=1}^m p(x_i) H(Y | X = x_i)\\ & = - \sum_{i, j} p(x_i, y_j) \log p(y_j | x_i). \end{array} H(YX)=i=1mp(xi)H(YX=xi)=i,jp(xi,yj)logp(yjxi).
XXXYYY带来的信息增益: H(Y)−H(Y∣X)H(Y) - H(Y | X)H(Y)H(YX).

3 程序分析

版本1. 使用sklearn (调包侠)
这里使用了数据集是数值型。

import numpy as np
import scipy as sp
import time, sklearn, math
from sklearn.model_selection import train_test_split
import sklearn.datasets, sklearn.neighbors, sklearn.tree, sklearn.metricsdef sklearnDecisionTreeTest():#Step 1. Load the datasettempDataset = sklearn.datasets.load_breast_cancer()x = tempDataset.datay = tempDataset.target# Split for training and testingx_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)#Step 2. Build classifiertempClassifier = sklearn.tree.DecisionTreeClassifier(criterion='entropy')tempClassifier.fit(x_train, y_train)#Step 3. Test#precision, recall, thresholds = sklearn.metrics.precision_recall_curve(y_test, tempClassifier.predict(x_test))tempAccuracy = sklearn.metrics.accuracy_score(y_test, tempClassifier.predict(x_test))tempRecall = sklearn.metrics.recall_score(y_test, tempClassifier.predict(x_test))#Step 4. Outputprint("precision = {}, recall = {}".format(tempAccuracy, tempRecall))sklearnDecisionTreeTest()

版本2. 自己重写重要函数

  1. 信息熵
#计算给定数据集的香农熵
def calcShannonEnt(paraDataSet):numInstances = len(paraDataSet)labelCounts = {}	#定义空字典for featVec in paraDataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0for key in labelCounts:prob = float(labelCounts[key])/numInstancesshannonEnt -= prob * math.log(prob, 2) #以2为底return shannonEnt
  1. 划分数据集
#dataSet 是数据集,axis是第几个特征,value是该特征的取值。
def splitDataSet(dataSet, axis, value):resultDataSet = []for featVec in dataSet:if featVec[axis] == value:#当前属性不需要reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])resultDataSet.append(reducedFeatVec)return resultDataSet
  1. 选择最好的特征划分
#该函数是将数据集中第axis个特征的值为value的数据提取出来。
#选择最好的特征划分
def chooseBestFeatureToSplit(dataSet):#决策属性不算numFeatures = len(dataSet[0]) - 1baseEntropy = calcShannonEnt(dataSet)bestInfoGain = 0.0bestFeature = -1for i in range(numFeatures):#把第i列属性的值取出来生成一维数组featList = [example[i] for example in dataSet]#剔除重复值uniqueVals = set(featList)newEntropy = 0.0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob*calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif(infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature
  1. 构建叶节点
#如果剩下的数据中无特征,则直接按最大百分比形成叶节点
def majorityCnt(classList):classCount = {}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount += 1;sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgette(1), reverse = True)return sortedClassCount[0][0]
  1. 创建决策树
#创建决策树
def createTree(dataSet, paraFeatureName):featureName = paraFeatureName.copy()classList = [example[-1] for example in dataSet]#Already pureif classList.count(classList[0]) == len(classList):return classList[0]#No more attributeif len(dataSet[0]) == 1:#if len(dataSet) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)#print(dataSet)#print("bestFeat:", bestFeat)bestFeatureName = featureName[bestFeat]myTree = {bestFeatureName:{}}del(featureName[bestFeat])featvalue = [example[bestFeat] for example in dataSet]uniqueVals = set(featvalue)for value in uniqueVals:subfeatureName = featureName[:]myTree[bestFeatureName][value] = createTree(splitDataSet(dataSet, bestFeat, value), subfeatureName)return myTree
  1. 分类和返回预测结果
#Classify and return the precision
def id3Classify(paraTree, paraTestingSet, featureNames, classValues):tempCorrect = 0.0tempTotal = len(paraTestingSet)tempPrediction = classValues[0]for featureVector in paraTestingSet:print("Instance: ", featureVector)tempTree = paraTreewhile True:for feature in featureNames:try:tempTree[feature]splitFeature = featurebreakexcept:i = 1 #Do nothingattributeValue = featureVector[featureNames.index(splitFeature)]print(splitFeature, " = ", attributeValue)tempPrediction = tempTree[splitFeature][attributeValue]if tempPrediction in classValues:breakelse:tempTree = tempPredictionprint("Prediction = ", tempPrediction)if featureVector[-1] == tempPrediction:tempCorrect += 1return tempCorrect/tempTotal
  1. 构建测试代码
def mfID3Test():#Step 1. Load the datasetweatherData = [['Sunny','Hot','High','FALSE','N'],['Sunny','Hot','High','TRUE','N'],['Overcast','Hot','High','FALSE','P'],['Rain','Mild','High','FALSE','P'],['Rain','Cool','Normal','FALSE','P'],['Rain','Cool','Normal','TRUE','N'],['Overcast','Cool','Normal','TRUE','P'],['Sunny','Mild','High','FALSE','N'],['Sunny','Cool','Normal','FALSE','P'],['Rain','Mild','Normal','FALSE','P'],['Sunny','Mild','Normal','TRUE','P'],['Overcast','Mild','High','TRUE','P'],['Overcast','Hot','Normal','FALSE','P'],['Rain','Mild','High','TRUE','N']]featureName = ['Outlook', 'Temperature', 'Humidity', 'Windy']classValues = ['P', 'N']tempTree = createTree(weatherData, featureName)print(tempTree)#print(createTree(mydata, featureName))#featureName = ['Outlook', 'Temperature', 'Humidity', 'Windy']print("Before classification, feature names = ", featureName)tempAccuracy = id3Classify(tempTree, weatherData, featureName, classValues)print("The accuracy of ID3 classifier is {}".format(tempAccuracy))def main():sklearnDecisionTreeTest()mfID3Test()main()

4 讨论

符合人类思维的模型;
信息增益只是一种启发式信息;
与各个属性值“平行”的划分。

其它决策树:

  • C4.5:处理数值型数据
  • CART:使用gini指数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_74676.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SVIP优先办理服务-课后程序(JAVA基础案例教程-黑马程序员编著-第八章-课后作业)

【案例8-2】 Svip优先办理服务 【案例介绍】 1.任务描述 在日常工作生活中,无论哪个行业都会设置一些Svip用户,Svip用户具有超级优先权,在办理业务时,Svip用户具有最大的优先级。 本案例要求编写一个模拟Svip优先办理业务的程…

newbing的注册使用

newbing是一款全新的智能搜索引擎,它可以帮助你快速、准确地找到你想要的信息,还可以与你进行友好、有趣的对话。newbing不仅拥有强大的搜索功能,还具备创造性和逻辑性,可以为你生成诗歌、故事、代码、歌词等各种内容。newbing还可…

【Spring从成神到升仙系列 一】2023年再不会动态代理,就要被淘汰了

👏作者简介:大家好,我是爱敲代码的小黄,独角兽企业的Java开发工程师,CSDN博客专家,阿里云专家博主📕系列专栏:Java设计模式、数据结构和算法、Kafka从入门到成神、Kafka从成神到升仙…

浅析 Redis 主从同步与故障转移原理

我们在生产中使用 Redis,如果只部署一个 Redis 实例,当该实例宕机,到恢复之前都不可用;虽说 Redis 一般都用来做缓存,但不可用给业务系统带来的影响也是不小的,流量大时甚至会导致整个服务宕机。所以 Redis…

芯驰(E3-gateway)开发板环境搭建

1-Windows下环境配置 可以在Windows上使用命令行或者IAR IDE编译SSDK项目。Windows编译依赖的工具已经包含在 prebuilts/windows 目录中,包括编译器、Python和命令行工具。 1.1.1 CMD SSDK集成 msys 工具,可以在Windows命令行中完成SDK的配置、编译和…

Binder系统-C程序示例_框架分析

IPC:进程间的通信,远程调用,比如我们的A进程需要打开LED灯,调用led_open/led_ctl方法,但是他是没有权限去操作的,所以进程A通过:1.首先构造一些数据,2.通过IPC发送数据到进程B&#…

【分布式系统】MinIO之Multi-Node Multi-Drive架构分析

文章目录架构分析节点资源硬盘资源服务安装安装步骤创建系统服务新建用户和用户组创建环境变量启动服务负载均衡代码集成注意最近打算使用MinIO替代原来使用的FastDFS,所以一直在学习MinIO的知识。这篇文章是基于MinIO多节点多驱动的部署进行研究。 架构分析 节点资…

SpringBoot配置文件(properties yml)

查看官网更多系统配置项:https://docs.spring.io/spring-boot/docs/current/reference/html/application-properties.html#application-properties 1.配置⽂件作⽤ 整个项⽬中所有重要的数据都是在配置⽂件中配置的,⽐如:数据库的连接信息&am…

怎么把音乐传到苹果手机上?如何将铃声导入iphone

很多人肯定都有这样的经验—比起电脑,使用iPhone和iPad播放音乐能获得更好的声音体验。 因此,现在有越来越多的用户将音乐传输到iPhone/iPad上播放。怎么把音乐传到苹果手机上?把音乐导入苹果手机,主要有2种方法:一种是…

vue中的百度地图的搜索定位功能

效果图 申请百度地图AK 前往 百度地图开放平台控制台 ,登录百度账号,创建应用即得。 封装loadBMap.js文件 /*** 动态加载百度地图api函数* param {String} ak 百度地图AK,必传*/ export default function loadBMap(ak) {return new Promise…

Python曲线肘部点检测-膝部点自动检测

文章目录一. 术语解释二. 拐点检测肘部法则是经常使用的法则。很多时候,可以凭人工经验去找最优拐点,但有时需要自动寻找拐点。最近解决了一下这个问题,希望对各位有用。一. 术语解释 **肘形曲线(elbow curve)**类似人胳膊状的曲线&#xff…

【ArcGIS Pro二次开发】(10):属性表字段(field)的修改

在ArcGIS Pro中,经常会遇到用字段计算器对要素的属性表进行计算。下面以一个例子演示如何在ArcGIS Pro SDK二次开发中实现。 一、要实现的功能 如上图所示的要素图层,要实现如下功能: 当字段【市级行政区】的值为【泉州市】时,将…

服务网格领域的百花齐放

服务网格是一种技术架构,它用于管理微服务系统中各个服务之间的通信,旨在处理微服务间的流量(也称为东西向流量)。 ​ 在云原生应用中,一个应用的背后可能存在着成百上千个服务,各个服务可能又有着若干个实…

【论文速递】EMNLP 2020 - 将事件抽取作为机器阅读理解任务

【论文速递】EMNLP 2020 - 将事件抽取作为机器阅读理解任务 【论文原文】:Event Extraction as Machine Reading Comprehension 【作者信息】:Jian Liu and Yubo Chen and Kang Liu and Wei Bi and Xiaojiang Liu 论文:https://aclantholo…

[音视频] wav 格式

wav 格式结构 WAV文件遵循RIFF规则,其内容以区块(chunk)为最小单位进行存储。WAV文件一般由3个区块组成:RIFF chunk、Format chunk和Data chunk。另外,文件中还可能包含一些可选的区块,如:Fact…

算法leetcode|38. 外观数列(多语言实现)

文章目录38. 外观数列:样例 1:样例 2:提示:分析:题解:rustgocpythonjava38. 外观数列: 给定一个正整数 n ,输出外观数列的第 n 项。 「外观数列」是一个整数序列,从数字…

异步交互的关键——Ajax

文章目录1,Ajax 概述1.1 作用1.2 同步和异步1.3 案例1.3.1 分析1.3.2 后端实现1.3.3 前端实现2,axios2.1 基本使用2.2 快速入门2.2.1 后端实现2.2.2 前端实现2.3 请求方法别名最后说一句1,Ajax 概述 AJAX (Asynchronous JavaScript And XML):异步的 Jav…

C语言--指针进阶2

目录前言函数指针函数指针数组指向函数指针数组的指针回调函数前言 本篇文章我们将继续学习指针进阶的有关内容 函数指针 我们依然用类比的方法1来理解函数指针这一全新的概念,如图1 我们用一段代码来验证一下: int Add(int x, int y) {return xy;…

少走弯路,来自HR自动化实践者5条忠告 | RPA铺第4期

安东尼与巴克利共同撰写的《“无人力”的人力资源?自动化、人工智能及机器学习时代的产业演变》一书中指出,到2030年,全球8.5%的制造业劳动力(约2000万工人)将会被自动化机器人取代。 因自动化、人工智能、机器学习带…

大数据之Phoenix基本介绍

文章目录前言一、Phoenix简介二、Phoenix入门(一)创建表语法(二)查看表信息(三)删除表(四)大小写问题前言 #博学谷IT学习技术支持# 上篇文章介绍了Phoenix环境搭建,点击…