人工神经网络概念及组成,人工神经网络基本概念

news/2024/4/29 8:16:06/文章来源:https://blog.csdn.net/mr_yu_an/article/details/127444699

1、什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

谷歌人工智能写作项目:小发猫

2、BP人工神经网络方法

(一)方法原理

人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统人工神经网络概论。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为

地球物理勘探概论

式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量

。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤

(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。

(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为

地球物理勘探概论

输出为

地球物理勘探概论

式中:f为阈值逻辑函数,一般取Sigmoid函数,即

地球物理勘探概论

式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差

地球物理勘探概论

式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值

地球物理勘探概论

式中:

地球物理勘探概论

地球物理勘探概论

(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例

以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射

构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。

S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4 塔北雅克拉地区BP神经网络聚类结果

(据刘天佑等,1997)

由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。

3、 方法概述

这里对找矿前景的遥感综合评价分两步进行,首先为全省范围的区域性评价,在此基础上对重点成矿区进行详细评价,具体工作流程见图10.14。

图10.14 找矿前景遥感评价工作流程

重点成矿区评价的遥感找矿信息较丰富,除线形体、环形体信息外,还有微地貌特征、岩石蚀变、植被异常及毒化信息等。不同地质环境、不同矿种、不同成因类型,其遥感找矿信息也不尽相同。在区域找矿遥感异常信息分析基础上,通过目视和机助解译,提取局部找矿遥感信息,综合地质、物探、化探信息和已知矿产分布情况,圈定有利找矿靶区,分析找矿有利部位。

10.4.1.1 SPV-ANN/GIS人工神经网络方法

地质运动的复杂性、致矿因素的多样性、信息(数据)搜集的不完善性、人们认识的局限性,是矿产预测评价工作的难点所在。传统的矿产预测方法以及与此相关的数据处理都必须解决数据分析和建模问题。另一方面,由于矿产地质信息的不完善性、不确定性和非结构化的特点,又难于建立它们的数学模型。所以到目前为止,几乎所有的矿产预测评价系统都是在特定条件下的结果,往往难以向其他地区推广应用(李长江等,1999)。

成矿信息内部及它们之间关系的处理,一直是地质学家所关心的问题之一。随着数字信息时代的到来,信息的提取、处理的方法已成为日益重要的问题。传统的方法虽然也能解决部分问题,但大多数是就事论事,难以真正从问题本身所具有的复杂性去认识,因而所获得的结论往往不具代表性。混沌理论的研究揭示事物具有复杂性的同时也具有简单的一面,是一个很具有说服力的表征之一。

成矿系统各信息之间的关系,用各种目前现有的传统(常规)的方法去处理,显然与自然界中事事物物都具有的普遍联系性的哲学理论不相宜。事物间本身具有内在的普遍联系,而这种普遍联系是否只是传统(简单)的线性或某(种)些函数关系,就值得我们深思。

人的大脑思维具有极其的复杂性,现代的电子计算机也无法完全模拟人的大脑工作状态,尤其是抽象思维能力,更是无力解决。大脑的思维具有联想、记忆能力。人工神经网络(Atificial Neural Network),即ANN正是基于人脑的工作原理、模拟大脑的工作机理和处理各种信息之间关系的一种新兴技术。不同的ANN模式,其原理和方法有所不同,但都是基于人脑的工作机理而设计的。

ANN技术在模式识别领域的研究已相当广泛且已进入实用阶段,如语音识别等。在矿产地质方面,也有不少关于应用ANN的报道,如McCormack(1991)、蔡煜东等(1994)、刘玲等(1994)、李裕伟和李林松(1996)、吕新彪和赵鹏大(1998)等曾对BIN、SOM等型的神经网络在地球物理勘探、铁帽识别、油气判别、储量计算等方面的应用进行了研究。李裕伟和李林松(1996)认为ANN在矿产储量计算中是一种在传统距离倒数法和克里金法之外的又一种较好的插值方法。ANN技术为矿产预测工作的发展开辟了新的途径,ANN不需要人们将各种成矿因素之间的相互关系搞清楚,只要求人们从已知的矿床(点)的生成条件进行研究,提取有利于成矿的条件,进行学习,学习是自动进行的,内部是一个黑盒子,在数据处理时可以避免数据分析和建模中的困难。从这一点而论,使研究成矿的信息集中在输入端、输出端(已知的矿床(点)),这使成矿预测工作效率大大提高,人们只需集中精力着重研究有利成矿的因素(条件)就可以了,而且一旦ANN的矿产预测评价模型建立,往往具有较强的通用性,一般可以持续使用。此外,在根据已有资料分析成矿条件时,ANN可以自动模拟各种成矿因素之间的自然关系,进行全局优化搜索,减少人为干预,提高矿产预测的有效性。

不同的ANN模型有不同的应用领域,根据研究的方法和对象对ANN模型的选取也有所变化。表10.2列出了一些常用的ANN模型及其特性。

表10.2 ANN主要类型及特性

SPV-ANN/GIS是李长江等(1999)、麻土华和李长江(2000)将SPV型人工神经网络与地理信息系统(GIS)结合发展的一种矿产资源潜力评价方法(以下简称ANN法)。

SPV(SOM-Probality-Vector)型神经网络不同于反馈型神经网络,是一种与邻域法相似,但属于自组织系统与概率型及平行向量法结合的神经网络。神经网络各层之间的关系,有基于线性的,也有基于非线性的。SPV则是基于非线性的。SPV型神经网络模型的方法原理如下。

连接权的值为1或0。采用的权的表达式为

浙江省国土资源遥感调查与综合研究

这里的

所使用的ANN含有两个隐含层(隐含层B和C)。在隐含层B中神经元的个数等于输入变量个数乘以模型向量数即N×M,隐含层C的神经元个数等于2倍于模型向量数。为了便于叙述,下面假定只有一个输出变量。

●输入层A:神经元的值

浙江省国土资源遥感调查与综合研究

浙江省国土资源遥感调查与综合研究

10.4.1.2 信息量法

信息量法(赵鹏大等,1983)也称信息和法(简称XXH法),是通过成矿有关标志变量的权重和单元内的找矿信息总和(成矿有利度)计算,来进行矿产预测的一种单变量统计分析法。该方法进行区域矿产预测的原理如下。

首先对研究区进行规则格网的划分,合理地确定标志变量,划分标志状态,并对每一格网的标志状态进行赋值。

然后计算有关标志变量的找矿信息量,选择与找矿有关的变量。

最后计算每个单元中各标志信息量的总和,反映该单元的成矿有利度,从而对评价区进行成矿预测。

信息量法进行成矿预测的前提是进行变量权重的计算,从而筛选出最优结构的变量组合。这一变量权重通常是对研究区含矿单元情况的人工统计,然后用条件概率公式计算得到,具体运算时用样本概率来进行估计

浙江省国土资源遥感调查与综合研究

式中:I是变量权重;Nj为具标志A状态J的含矿单元数;N是研究区含矿单元总数;sj是区内具标志A状态j的单元数;S为研究区单元总数。

I值的大小反映所计算的标志(A)状态(j)——即变量所提供的找矿信息量,I值越大,反映该标志状态下成矿的可能性越大。

通常使用的信息量计算法须对所有变量逐个单元进行人为赋值,工作量繁重,人为性较大,对含矿单元矿床值大小未予区分,影响计算结果的可信度。

这里使用的信息量法是在传统方法的基础上,在GIS平台上,对变量(遥感、地质信息)权重计算方法加以改进的结果。其预测原理与传统方法相同,具体计算步骤如图10.15所示。

图10.15 信息量法区域矿产遥感综合预测流程

首先,对遥感解译得到的找矿遥感信息和地质信息经判释后,初步选择与相应矿种成矿有关的信息作为标志变量,与已知矿产地数据一道进行赋值,并在地理信息系统上转为栅格型数据,形成统一投影的匹配数据集。在进行矿产地数据赋值时,不同规模的矿产地赋予不同的权值,以突出其间差异。

其次,选择已知矿产地质研究程度较高的地区作为训练区,筛选出训练区内相应矿种的矿产地数据和标志变量数据子集,对该子集进行主成分分析,得到各标志变量与矿产地数据间的相关性系数,作为其相对权重。这一方法免去了样本概率计算这一繁杂过程,减少了人为性,经反复试验,效果较稳定可靠。

最后,将训练区得到的变量权重推广到研究区(全省)范围,对各单元(网格)的遥感信息进行加权求和,即得到各单元的找矿遥感信息量(反映该单元找矿的相对有利度)。在地理信息系统中,对所有单元的遥感找矿信息量经伪彩色变换即得到遥感信息量分布图,用以成矿预测评价。

通过地理信息系统的使用,使得各找矿信息(变量)的权重计算和单元信息量计算均非常简便,免去了逐个单元人工统计信息的烦琐过程,比传统的统计预测法定位准确,计算速度快,流程简洁,且结果具有可视性(以信息量分布图形式表现)。

在全省3km×3km网格数据中,将ANN和XXH这两种方法计算的遥感信息量和已知矿床值分别进行最大值归一化,并将含矿网格(总数137)归一化的遥感信息量与矿床值(经归一化)求比值,得到不同比值区间的频数分布图(图10.16)。利用此图对两种方法计算结果进行对比,可以发现SPV-ANN/GIS法计算结果信息较集中(主要频数分布在0.4~0.8之间),但大部分含矿网格预测结果较实际值系统偏低;XXH法计算信息较分散(分布曲线低缓),较理想分布线误差大,正偏和负偏均较明显,故总体预测效果偏差较大。另外从遥感信息量分布图中直接可看出,SPV-ANN/GIS法计算结果主要反映局部变化信息,可突出非变质岩区的遥感信息权重,变质岩区则可突出找矿有利地区,圈定找矿靶区,预测效果总体明显较好;而XXH法过于倚重权系数较大的信息,有利于反映区域成矿有利度,局部地区和已知矿产地、化探异常套合好,对非变质岩区的预测效果有所降低,对变质岩区成矿信息相对强弱的区分也不明显。将两种方法综合应用,对找矿有利地区的揭示更有价值。

图10.16 遥感信息量计算效果对比图

横坐标吻合比值表示含矿网格遥感信息量(经归一化)与已知矿床(经归一化)之比值,纵坐标ANN和XXH频数是吻合比值区间的含矿网格数。总含矿网格数为137,计算分布线与理想分布线(吻合比值为1)的接近程度反映预测的可靠程度

4、安徽大学计算机科学与技术学院的研究生专业

一.概况
计算机应用技术专业现设有计算机应用技术的二级学科博士点和硕士点,其培养方式为硕士、博士、提前攻博等等。2002年获准国家立项的计算机应用技术重点学科,2003年获准建立计算机应用技术博士后流动站。硕士研究生学制3年,实行学分制,2005年招生规模为30人。博士研究生学制2年,实行学分制,2005年招生规模为12人。
近年来,本学科先后获得211工程和国家重点学科经费资助,软硬件设施得到了根本改善,在主要研究方向已形成人才高地。
二.学科研究方向介绍
主要研究方向是计算智能与知识工程,包括问题求解商空间理论及其应用、基于商空间理论的粒度计算理论及其应用、构造性机器学习理论及其应用、优化理论与方法的研究、新的层次机器学习理论和方法的研究以及复杂系统的优化技术和方法等等,获得了一批原创性在国内外有重要影响的科研成果。
三.专业课程设置
1.学位课
英语、科学社会主义理论与实践、自然辩证法概论、组合数学、算法设计分析、高级数据库系统、计算机科学数学理论、人工神经网络的理论及应用、人工智能高级教程、高级数据库技术等等
2.非学位课
并行计算、智能计算、计算机视觉、知识发现、专家系统及其开发环境、优化理论及方法、构造性学习理论与方法和数据仓库及数据采集等等
四、学科导师队伍
张铃:男,1937年5月生,福建福清人,1961年毕业于南京大学数学天文系.同年分配至安徽工作,先后在安徽四所大学任教。1993年调至安徽大学人工智能研究所,任所长、教授、博士生导师至今。1986年4月由讲师破格晋升为正教授,1988年被授予国家有突出贡献的中青年专家称号,1991年获享受国家特殊津贴待遇,先后被清华大学、浙江大学、同济大学和中科院智能所等单位聘为客座教授。获得荣誉称号:改革开放以来,获全国教育系统劳动模范等省级以上荣誉称号八次;先后获国家自然科学奖等省级以上学术奖励十次;1978年获安徽省首届科技大会成果奖;1984年获第六届ICL欧洲人工智能奖;1987年获国家教委科学技术进步一等奖;1991年获国家教委科学技术进步二等奖;1992年专著《问题求解理论及应用》获全国高等学校出版社优秀学术专著特等奖;1992年专著《新一代计算技术前沿的研究》获全国优秀科技图书一等奖;1993年获电子工业部科技进步一等奖;1995年获国家自然科学三等奖;1999年获“全国优秀科技图书奖”暨“科技进步奖(科技著作)”一等奖;1999年获安徽省自然科学二等奖。目前主要研究方向有:商空间粒度计算理论(这是目前国际上三大粒度计算理论之一)、智能计算、机器学习理论和方法等。
程家兴:男,澳大利亚南澳大学博士,教授,现任安徽大学计算智能与信号处理教育部重点实验室主任,博士生导师,安徽省计算机学会常务理事,澳大利亚南澳大学SCG研究所研究员。主持和参加国家自然科学基金项目,国家自然科学基金中澳特别基金项目、教育部“优秀青年教师资助计划”项目、教育部博士点基金项目等。与澳大利亚南澳大学建立国际合作关系。研究方向:智能计算,算法分析与设计,最优化方法。获安徽省高校科技进步3等奖,安徽省第三届自然科学优秀学术论文2等奖.。目前,指导博士生5名,硕士生9名。主讲课程有具体数学,智能计算,优化理论与方法,组合数学以及本科生离散数学教学课程等。
张燕平:女,1962.2出生,安徽巢湖人;1981年毕业于上海电力学院热工自动化专业; 1989年作为合肥工业大学微机应用研究所研究生获工学硕士;2000年9月至2003年7月在职读博士研究生,并获得安徽大学计算机应用专业工学博士学位。2000年6月任安徽大学计算机系副教授;2003年担任计算机应用专业硕士研究生导师; 2004年11月任教授。主持完成安徽省教育厅自然科学研究项目1项,参加国家自然科学基金项目多项。2004年获安徽省科技进步二等奖。已在《计算机学报》、《计算机研究与发展》等国家重点期刊和国家级期刊发表学术论文18篇。
汪继文:男,1958年9月生,安徽宿松人。1982年1月本科毕业于安庆师范学院数学系,获理学学士学位。1989年7月硕士毕业于安徽大学数学系,获理学硕士学位。2001年7月博士毕业于中国科学技术大学数学系,获理学博士学位。2001.12 进入中国科技大学动力工程及工程热物理博士后流动站火灾科学国家重点实验室做博士后。2004.8出站,获博士后证书。1982.1-1986.9在安庆师范学院数学系任教。1989年7月硕士毕业后留校到安徽大学计算机学院(原为计算机系)任教到至今。2001年6月担任硕士生导师,2002年9月受聘为教授。2002.12入选为安徽省高校中青年学科带头人培养对象。三次获教学优秀奖,一次获安徽省高校科技进步三等奖。目前主要研究方向是计算机数值模拟技术,先后参加了5项国家自然科学基金项目的研究工作,主持完成两项省教委项目。目前参加一项国家自然科学基金项目,主持一项省自然科学基金项目。已发表学术论文28篇,SCI收录论文4篇。 1. 智能软件
学科带头人李龙澍教授,博士生导师,主要研究兴趣为软件体系结构、不精确知识表示和智能Agent技术,发表研究论文50多篇,主持开发的主要系统有:农业气象决策支持系统、大型数据库管理系统、电子政务系统、网络信息管理系统。
软件体系结构的研究:探讨知识的继承机制和抽象原理,使智能软件系统的数据库、模型库和方法库融为一体,引进了知识的层次结构,增强系统的可用性和维护效率。完成国家“863”项目“基于气象分析的指导农作物种植管理软构件”,主持研究国家自然科学基金项目“智能软件体系结构和组件技术的研究”,深入研究模糊商结构理论,将粒度计算理论用于建造软件体系结构模型,提出了一种基于商空间的智能软件体系结构构造模型,研究成果在农业气象、河流污染、公路管理、煤矿救护等GIS系统中有广泛应用。
不精确知识表示的研究:深入研究不精确知识表示的特点,提出一种适合领域特征的信息处理系统的框架和数据约简、知识发现方案,促进知识库系统开发技术水平的发展。研制适合模糊粗糙集信息处理的新的智能软件体系结构,不仅具有重大学术价值,而且在农业气象分析应用中取得其它方法和系统无法替代的明显效果,结合农业气象信息,分析模糊粗糙集的特性和优点,研制适合知识处理的构件模型,用于建造减灾防灾、农作物管理等实际决策支持系统,产生巨大的社会经济效益。
智能Agent技术的研究:Agent体系结构是智能Agent研究中一个重要的研究方向,它所要解决的问题是智能Agent是由哪些模块组成,这些模块之间如何交换信息,以及如何将这些模块用软件或硬件的方式组合起来形成一个有机的整体。结合完成国家“863”项目、国家自然科学基金项目等重大科研项目和机器人世界杯足球锦标赛RoboCup(Robot World Cup),面向大中型企业的数据仓库进行数据挖掘和建造基于Agent技术的智能决策支持系统,为安徽现代化建设产生重大社会经济效益。
2. 数据库与Web技术
学科带头人郑诚博士、副教授。2002年12月毕业于中国科学技术大学计算机系,并获博士学位,研究方向:数据库与数据仓库技术、知识发现与数据挖掘技术、人工智能与机器学习、新一代Web技术等。2005年9月起在安徽大学计算机科学与技术博士后流动站进行博士后研究(在职)。安徽大学中青年骨干教师,安徽省高校骨干教师培养对象。近几年内作为主要骨干参加国家自然科学基金、863计划、安徽省自然科学基金项目等项目4项。主持省教育厅自然科学研究项目二项,发表学术论文20余篇。
数据库与Web技术方向:研究数据库与数据仓库及其应用技术、基于数据库和数据仓库的数据挖掘技术,研究多粒度数据挖掘技术,将它们应用于税务、网络安全等领域;研究语义Web技术,在Web中引入有关智能技术,让计算机能理解Web上的信息。
3. 并行计算
学科带头人刘锋,博士,教授。主要研究方向:软件工程、并行计算、网格计算,承担国家自然基金项目、教育部科研项目、安徽省自然基金项目和安徽省教育厅自然基金项目多项。
近期发表的主要论著:
1. 基于改进型遗传算法的门阵列模式布局 (EI)小型微型计算机系统 2002,no.3
2. 求复函数方程根的遗传算法 计算机工程与应用2001年,37卷,第24期
3. PVM环境下求复函数方程根的并行遗传算法 小型微型计算机系统 2003,no.7
4. ORACLE数据库的MIT在营业帐务系统中的应用 电信技术 2001.9
5. 电子出版物与纸质出版物异同论 情报科学 2001.7
6. 基于遗传算法的方程求根算法的设计和实现 (EI)控制理论与应用 2004年第3期
7. Internet QoS控制机制综述 计算机科学 2002.3.
8. 基于分布理论和遗传算法的多项式求根算法 微机发展 2001年第6期
9. 基于Agent网格计算性能的实时调节 计算机工程与应用 2003年第39期
10. 并行遗传算法求复函数方程根的设计和实现 (EI)系统工程理论与实践 2004年第6期
4. 中间件技术
学科带头人邹海,博士,高工。2001年3月至2003年7月在中国矿业大学电气工程(信息与电子技术)博士后科研流动站从事博士后研究。近年来主要专注于模糊与随机环境下的粗糙集理论与知识获取、中间件技术等方面的研究。主持或参与完成了国家自然科学基金项目1项、948项目1项、省部级自然科学基金2项和10多项横向合作项目,目前在研省青年教师基金项目1项、省教育厅自然科学基金1项,获省、部级科学技术进步奖3项,发表论文10余篇。近年来承担了包括东北晚中生代资源预测专家系统、坝工建筑物实时监测数据采集系统、基于网络通讯的远程分布式遥测系统、基于数据挖掘的防汛抗旱调度指挥系统、B/S/S架构的客户关系管理系统在内的多个应用系统的设计和研发工作,并得以成功应用。
模糊与随机环境下的粗糙集理论与知识获取研究:针对信息识别中大量存在的不完备信息和随机环境这一的特点,结合智能信息处理领域近年来迅速发展起来的粗糙集(Rough Set)理论,深入研究在复杂系统中不完备信息及其随机环境下知识的表示、知识的约简、知识的学习、归纳和推理等。
中间件技术的研究:中间件技术作为90年代初发展起来的基础软件,近几年来逐渐成为构建网络分布式应用系统的重要支撑工具。它能够解决网络分布计算环境中多种异构数据资源互联共享问题,实现多种应用软件的协同工作。研究方向涉及分布式高性能高可靠企业级基础软件平台架构与机制、应用集成架构与技术、J2EE应用服务器、、工作流技术、移动中间件技术、反射中间件技术、嵌入式中间件技术、网络即插即用中间技术件、普适计算中间件技术、网格计算中间件技术、CORBA高级技术等。目前,中间件已与操作系统、数据库、前端应用软件一起,跻身于软件业发展的重点之列,并成为分布式应用的关键性软件。它可广泛适用于政府部门、银行、证券、电力、电信、交通与军事等关键性的网络分布应用。 一、研究生始招时间及在校研究生规模
始招时间:2002年
在校研究生规模:约60人
二、导师梯队介绍
1.计算机视觉及应用方向
韦穗:安徽大学副校长、教授、中国图像图形学会副理事长、教育部科学委员会信息学部委员,1983年4月至1985年9月在美国密执安大学及弗吉尼亚多理学院作访问学者。长期从事计算机视觉、图像图形学、模式识别、数学形态学和全息成像等领域的研究。近年来承担了多项国家自然科学基金项目和863项目。其中大容量快速图像分析系统(负责人)获中科院科技进步二等奖;并荣获国家863计划智能机器人主题先进工作者称号及国家科技部授予的国家863计划先进工作者称号。863项目“基于VR技术的装配帮助系统”(负责人)的研究, 2000年经863专家组组织验收,认为该项目的成果对于本领域的研究起到了开拓性的作用。国家自然基金项目“基于SVD分解的射影重构算法研究”在图形学中的多视图几何、3D重构和基于图像的绘制、图像获取几何和降低计算复杂性,实现复杂景物的3D描述与显示方面取得了一定的研究成果。主持了2002年第二届国际图像图形学会年会,编辑了两本会议论文集,其中大部分论文都被EI收录,翻译出版《计算机视觉中的多视图几何》(由英国剑桥大学出版社和原著作者Richard Hartley和Sman的授权)。
梁栋:博士、教授(博导),安徽大学电子科学与技术学院副院长。1985年和1990年在安徽大学获学士和硕士学位,2002年获安徽大学计算机应用技术专业工学博士学位。1991年晋升为安徽大学讲师,1996年晋升为安徽大学副教授,2002年晋升为安徽大学教授。1995年被评为安徽大学中青年骨干教师和安徽省中青年骨干教师培养对象,2002年被评为安徽省高等学校中青年学科带头人培养对象。近年来,在国内外学术期刊和学术会议上发表专题学术论文30多篇,主持和参加安徽省自然科学基金、国家自然科学基金、国家863计划、国家科技部科技型中小企业技术创新基金等科研项目20多项,先后获安徽省科技进步四等奖1项、安徽省高等学校科技进步三等奖2项、新型实用专利1项、安徽大学教学成果二等奖1项。主要研究领域:计算机视觉、图象信息处理。
2.图像处理与识别方向
罗斌:博士、教授(博导),英国约克大学计算机科学博士,安徽大学计算机科学与技术学院教授,博士生导师,安徽省首批“皖江学者”特聘教授,安徽省跨世纪学术技术带头人后备人选,安徽大学计算机科学与技术学院院长。中国图象图形学会理事、学术委员会、青年工作委员会委员,IEEE学会会员,IEEE计算机学会会员,英国BMVA会员。研究领域为数字图像处理与模式识别。目前主持国家自然科学基金项目《基于邻接图谱理论的图像聚类方法研究》,以及教育部“优秀青年教师资助计划”项目、安徽省人才开发基金和安徽省教育厅自然科学研究项目等。与国外同行专家保持有良好的合作关系,参加英国EPSRC项目的研究。主要研究成果有:应用现代图的分解理论对图像的结构化描述、图匹配理论和图的聚类方法进行了研究;利用EM算法和矩阵的SVD分解理论得到不同大小及包含结构噪声图的匹配方法,提出一种基于图匹配的图像配准算法;将图的谱分解理论应用于图像的识别和聚类,提出图谱结构特征提取方法,以及利用谱特征进行图的识别与聚类,并应用于图像库的检索。研究成果曾获亚洲计算机视觉学术会议最佳论文奖和安徽省科技进步三等奖。在国内外学术刊物和国际会议上发表论文70余篇,论文被SCI、EI、ISTP等索引40多次,论文代表作曾发表于《IEEE Transactions on Pattern Analysis and Machine Intelligence》、《Computer Vision and Image Understanding》、《Pattern Recognition》、《Pattern Recognition Letters》、《Image Vision Computing》等学术期刊。
3.智能信息处理方向
吴小培:博士、教授(博导)。2002年12月于中国科学技术大学获博士学位,研究方向为生物医学信号处理。2003年10月起在中国科学技术大学信号与信息处理博士后流动站进行博士后研究(在职), 2004年4月-9月美国加州大学圣地亚哥分校访问学者。安徽大学中青年骨干教师,安徽省高校学科带头人培养对象。研究领域:盲信号处理,生物医学信号处理和语音、图像处理和识别。近年内主持和参加国家自然科学基金、安徽省自然科学基金项目等项目5项。发表学术论文40余篇。在盲源分离、独立分量分析和脑电信号处理等方面的研究成果在国内有一定的影响,相关论文多次被同行引用。
柴晓冬:教授,博士。安徽省高校中青年骨干教师。目前在中国科技大学电子技术与科学系做博士后研究(在职),研究内容为基于生物特征识别的信息安全。参与研究国家自然科学基金项目两项,主持省教委自然科学基金项目二项,在国内外重要学术刊物及学术会议上发表论文三十余篇。
4.多维信号处理方向
陶亮:博士、教授(博导),安徽省高校学科拔尖人才,计算机科学与技术学院院长助理。2003年于中国科技大学获得信息与通信工程专业博士学位。1997年考取国家留学基金委公派访问学者资格,次年被派往加拿大温莎大学访问研修一年。1999年被选为安徽大学中青年骨干教师,2001年入选教育部优秀青年教师资助计划并获项目资助,2002年入选安徽省高校首批学科拔尖人才。自1988年研究生毕业留校以来,一直从事教学与科研工作,曾给本科生、研究生开设或主讲过多门专业课程,获得过校教学成果奖和校教书育人先进个人称号;是本校信号与信息处理专业硕士生导师(该学位授予点开点导师之一),同时也是本校计算机应用技术专业博士生导师。参加或主持过多项科学研究,近期主持了安徽省教育厅自然科学重点研究项目、安徽省自然科学基金项目及教育部优秀青年教师资助计划项目的研究各一项。主要研究方向为多维信号处理、生物特征识别技术。在《Journal of Computer Science and Technology》、《Chinese Journal of Electronics》、《电子学报》、《Chinese Optics Letters》等核心学术期刊以及国际学术会议上发表论文50多篇,获得过安徽省第四届自然科学优秀学术论文奖,目前(2005年4月)已有2篇论文被SCI收录,22篇论文被EI收录,10篇论文被ISTP收录,多篇论文被他人引用;有专著1部(《实值Gabor变换理论及应用》);是《电路与系统学报》和《计算机辅助设计和图形学学报》审稿人以及IEEE国际电路与系统专业学术年会审稿人(被邀请担任过审稿委员会委员、专题分会主持)。
三、主要学术成果
1.在国家自然科学基金项目“基本矩阵的鲁棒性计算及应用”支持下,应用视觉理论、投影几何、代数几何、矩阵分析和现代数学最优化理论,完成了基本矩阵的鲁棒性算法研究,并给出了在3维计算机视觉中相关问题的鲁棒性算法。
2.在国家自然科学基金项目“基于SVD分解的射影重构算法研究”支持下,对基于SVD分解的射影重构算法作深入系统的研究,并通过模拟数据和真实图像两方面的实验,获得图像中匹配点噪声效应的定量理解和算法性能的定性理解。
3.在国家自然科学基金项目“基于照片的场景重现”支持下,对基于序列图像的全景漫游技术进行了研究,主要包括:图像插补问题、图像整合问题及全景图生成问题。
4.在国家“863”计划项目“基于虚拟现实技术的装配帮助系统”支持下,完成了以下研究工作:1)建立一个Windows环境下的多模综合实验平台;2)实现一个基于视点的物体识别、定位的帮助装配系统的虚拟现实系统;3)对摄像机自标定、基于视点的插补、3D重构等问题进行了深入地研究。经国家“863”专家组鉴定:对本领域的研究起到了开拓性的作用。
5.在国家自然科学基金项目支持下对计算机产生体视全息图进行了研究。全息技术能提供所有视点、距离上的3D(深度)感知,它是目前最理想的3D显示。当今来自计算机、卫星、先进医学成像设备、战场环境的精确模拟以及地质勘探等各个领域的数据与日俱增,人们越来越希望能将这些数据变换成人们更易理解的形式,即真3D显示的形式。它无须借助眼镜、头盔等辅助设备,并用计算机生成3D显示的编码,由光电器件生成空间显示。
6.先后完成“基于图像的交通肇事现场测距系统”、“基于图像序列的交互式全景漫游生成系统”、“合肥风光交互式全景漫游系统”、“基于图像的犯罪现场重现系统”、“芜湖长江大桥和合肥中心油库交互演示系统”、“宜昌交互式招商引资展示系统”等开发和研制,并应用于交通事故处理、公安刑侦、城市规划、旅游宣传等多个方面,取得了较好的社会效益和经济效益。对计算机视觉、图像处理以及虚拟现实技术的推广应用起到了积极的促进作用。其中“基于图像的交通肇事现场测距系统”和“合肥风光交互式全景漫游系统”经合肥市科技局组织专家鉴定:核心技术水平达到国际先进水平,系统达到国内领先水平,并填补国内空白。
7. 在国家自然科学基金、安徽省自然科学基金项目等项目的支持下,初步验证了用独立分量描述思维脑电特征的可行性,并提出了基于思维脑电独立分量特征的脑机接口技术研究新设想。该研究思路和阶段性成果获得了国内外专家的肯定;研究了小波变换和独立分量分析进行结合的可行性,实验结果表明,基于小波变换和ICA的时频空三域分析方法能较好地解决多导脑电信号ICA分析中存在的过完备问题和非平稳问题;研究了在线ICA算法及其实现技术,提出了一种简单实用的在线Infomax算法,并用于实测脑电数据的在线消澡问题,取得了较理想的结果,该项成果是对Infomax 盲源分离算法的扩展和补充。
8.在教育部优秀青年教师资助计划项目、安徽省自然科学基金项目以及安徽省教育厅自然科学重点研究项目的支持下,研究提出了实值离散Gabor变换(RDGT)理论与快速算法,提出了基于RDGT的瞬变信号表示算法、基于过抽样RDGT的核磁共振FID信号增强算法,以及基于RDGT的线性时变系统表示与逼近方法;研究了基于人脸识别的身份认证方法与系统。研究成果以40多篇论文中英文形式发表在《Journal of Computer Science and Technology》、《Chinese Journal of Electronics》、《电子学报》等重要的核心学术期刊和若干国际学术会议上,并且已有20多篇论文被SCI、EI、ISTP收录。
四、学科研究方向介绍
1.计算机视觉及应用方向
将多视图几何与矩阵分析、谐波分析和现代数学最优化理论结合起来,研究基于图像的3D成像几何与物理中的算法和应用,包括基本矩阵的鲁棒计算及应用、基于照片的场景重现和SVD重构、基于虚拟现实技术的装配帮助系统、计算机产生体视全息图的研究及其在交通事故处理、公安刑侦、城市规划、旅游宣传、文化遗产保护等方面的应用。
2.图像处理与识别方向
将现代图的分解理论、现代统计学理论和模式识别理论应用于数字图像的分析与识别,对图像的结构化描述、图像特征的提取、图像的配准、结构模式识别中的图匹配理论和图的聚类方法进行研究,并将图匹配理论和图聚类方法应用于图像库的检索和索引。
3.智能信息处理方向
研究小波分析理论及其在脑电信号处理中的应用、基于时-频-空三域分析方法的思维脑电特征提取与识别、思维脑电的独立分量分析及其在脑机接口中的应用、在线盲源分离算法及其DSP实现。
4.多维信号处理方向
研究多维信号分析与处理技术的新理论和新方法,并应用于生物信息、语音、图像信号的处理和识别。如一维和二维实值离散Gabor变换理论、快速算法及应用的研究;复杂背景下灰度图像和彩色图像中人眼自动定位算法;基于人脸识别的身份认证方法与系统实现;支持向量机快速学习算法及应用;语音消澡和识别技术等。

5、人工智能的发展概况

探讨人工智能,就要回答什么是智能的问题,综合各类定义,智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题和解决问题的综合能力。对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”,斯坦福大学人工智能研究中心尼尔逊教授提出“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学”。综合来看人工智能是相对人的智能而言的。其本质是对人思维的信息过程的模拟,是人的智能的物化。是研究、开发模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
(一)感知、处理和反馈构成人工智能的三个关键环节
人工智能经过信息采集、处理和反馈三个核心环节,综合表现出智能感知、精确性计算、智能反馈控制,即感知、思考、行动三个层层递进的特征。
智能感知:智能的产生首先需要收集到足够多的结构化数据去表述场景,因此智能感知是实现人工智能的第一步。智能感知技术的目的是使计算机能 “听”、会“看”,目前相应的计算机视觉技术和自然语言处理技术均已经初步成熟,开始商业化尝试。
智能处理:产生智能的第二步是使计算机具备足够的计算能力模拟人的某些思维过程和行为对分析收集来的数据信息做出判断,即对感知的信息进行自我学习、信息检索、逻辑判断、决策,并产生相应反映。具体的研究领域包括知识表达、自动推理、机器学习等,与精确性计算及编程技术、存储技术、网络技术等密切相关,是大数据技术发展的远期目标,目前该领域研究还处于实验室研究阶段,其中机器学习是人工智能领域目前热度最高,科研成果最密集的领域。
智能反馈:智能反馈控制将前期处理和判断的结果转译为肢体运动和媒介信息传输给人机交互界面或外部设备,实现人机、机物的信息交流和物理互动。智能反馈控制是人工智能最直观的表现形式,其表达能力展现了系统整体的智能水平。智能反馈控制领域与机械技术、控制技术和感知技术密切相关,整体表现为机器人学,目前机械技术受制于材料学发展缓慢,控制技术受益于工业机器人领域的积累相对成熟。
(二)深度学习是当前最热的人工智能研究领域
在学术界,实现人工智能有三种路线,一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有专家系统和知识工程。二是基于统计方法的仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生,三是行为主义,希望从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
当前,基于人工神经网络的深度学习技术是当前最热的研究领域,被Google,Facebook,IBM,百度,NEC以及其他互联网公司广泛使用,来进行图像和语音识别。人工神经网络从上个世纪80年代起步,科学家不断优化和推进算法的研究,同时受益于计算机技术的快速提升,目前科学家可以利用GPU(图形处理器)模拟超大型的人工神经网络;互联网业务的快速发展,为深度学习提供了上百万的样本进行训练,上述三个因素共同作用下使语音识别技术和图像识别技术能够达到90%以上的准确率。
(三)主要发达国家积极布局人工智能技术,抢占战略制高点。
各国政府高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过公共投资的方式牵引人工智能产业的发展,2013财年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。
在技术方向上,美国将机器人技术列为警惕技术,主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。
现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。
由于深度学习的成功,学术界进一步沿着连接主义的路线提升计算机对人脑的模拟程度。人脑仿生计算技术的发展,将使电脑可以模仿人类大脑的运算并能够实现学习和记忆,同时可以触类旁通并实现对知识的创造,这种具有创新能力的设计将会让电脑拥有自我学习和创造的能力,与人类大脑的功能几无二致。在2013年初的国情咨文中,美国总统奥巴马特别提到为人脑绘图的计划,宣布投入30亿美元在10年内绘制出“人类大脑图谱”,以了解人脑的运行机理。欧盟委员会也在2013年初宣布,石墨烯和人脑工程两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划,每项计划将在未来10年内分别获得10亿欧元的经费。美国IBM公司正在研究一种新型的仿生芯片,利用这些芯片,人类可以实现电脑模仿人脑的运算过程,预计最快到2019年可完全模拟出人类大脑。
(四)高科技企业普遍将人工智能视为下一代产业革命和互联网革命的技术引爆点进行投资,加快产业化进程。
谷歌在2013年完成了8 家机器人相关企业的收购,在机器学习方面也大肆搜罗企业和人才,收购了DeepMind和计算机视觉领军企业Andrew Zisserman,又聘请DARPA原负责人 Regina Dugan负责颠覆性创新项目的研究,并安排构建Google基础算法和开发平台的著名计算机科学家Jeff Dean转战深度学习领域。苹果2014 年在自动化上的资本支出预算高达110 亿美元。苹果手机中采用的Siri智能助理脱胎于美国先进研究项目局(DARPA)投资1.5亿美元,历时5年的CALO( Cognitive Assistant that Learns and Organizes)项目,是美国首个得到大规模产业化应用的人工智能项目。Amazon计划在2015 年能够使用自己的机器人飞行器进行快递服务。韩国和日本的各家公司也纷纷把机器人技术移植到制造业新领域并尝试进入服务业
(五)人工智能的实际应用
人工智能概念从1956年提出,到今天初步具备产品化的可能性经历了58年的演进,各个重要组成部分的研究进度和产品化水平各不相同。人工智能产品的发展是一个渐进性的过程,是一个从单一功能设备向通用设备,从单一场景到复杂场景,从简单行为到复杂行为的发展过程,具有多种表现形式。
人工智能产品近期仍将作为辅助人类工作的工具出现,多表现为传统设备的升级版本,如智能/无人驾驶汽车,扫地机器人,医疗机器人等。汽车、吸尘器等产品和人类已经有成熟的物理交互模式,人工智能技术通过赋予上述产品一定的机器智能来提升其自动工作的能力。但未来将会出现在各类环境中模拟人类思维模式去执行各类任务的真正意义的智能机器人,这类产品没有成熟的人机接口可以借鉴,需要从机械、控制、交互各个层面进行全新研发。
希望我的回答可以帮到您哦

6、人工智能学院都学习一些什么呢?

人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;
当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;
算法很多需要时间的积累。
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件,一些电类基础课必不可少;
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
刚才提到的这些学科的每一门都是博大精深的,但同时很多事物都是相通的,你学了很多知识有了一定的基础的时候再看相关知识就会触类旁通,很容易。在这中间关键是要有自己的思考,不能人云亦云。毕竟,人工智能是一个正在发展并具有无穷挑战和乐趣的学科。

7、帮忙看看图片中的是什么字。 50

0.神经网络与神经计算机原理应用
1.微泵膜片在静电驱动下的计算机模拟
2.环键码在位置检测中的应用
3.什么推动了生产力的发展
4.论混合所有制经济
6.计算机在神经生物学和行为上的应用
7.中国经济界的动向与变化
8.中国高等学校的发展趋势
9.人工神经网络与计算机
10.校园网络的安全策略探析
基本就是上面这样了
^_^

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_404460.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

含汞废水的深度处理方法

CH-95 是一款为了从工业废水中去除回收汞和贵金属而专门开发的螯合树脂。拥有聚乙烯 异硫脲官能基的大孔树脂,这种树脂对汞有极高的选择性。钠,碱土,铁铜等重金属等不能干扰 其对汞的选择性去除。 CH-97 是一款含有附着甲基硫醇聚苯乙烯共…

基于PB的企业人力资源信息系统设计与实现

目 录 摘 要 I Abstract II 第1章 引言 1 1.1选题背景及意义 1 1.2发展现状 1 1.3论文结构 2 第2章 系统分析 3 2.1 系统目标 3 2.2 系统需求分析 3 第3章 系统设计 5 3.1 系统功能结构设计 5 3.2 数据库设计与实现 7 3.2.1数据库需求分析 7 3.2.2数据库概念结构设计 8 3.2.3数…

[oeasy]python0010 - python虚拟机解释执行py文件的原理

解释运行程序 🥊 回忆上次内容 我们这次设置了断点 设置断点的目的是更快地调试调试的目的是去除​​bug​​别害怕​​bug​​一步步地总能找到​​bug​​这就是程序员基本功 调试​​debug​​ 我心中还是有疑问 ​​python3​​ 是怎么解释​​hello.py​​ 的…

Python实现SSA智能麻雀搜索算法优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出&am…

pytorch:常见的pytorch参数初始化方法总结

pytorch参数初始化1. 关于常见的初始化方法1) 均匀分布初始化torch.nn.init.uniform_()2) 正态分布初始化torch.nn.init.normal_()3) 常量初始化torch.nn.init.constant_()4) Xavier均匀分布5)Xavier正态分布初始化6) kaiming均匀分布初始化7) kaiming正…

除了pid还有什么控制算法,类似pid算法还有哪些

什么是专家PID?他和传统的PID有什么区别? PID是智能控制啊,比如要控制一个水管的水流量,通过流量计,开关阀,让PID来控制开关阀的开关大小使水流量正确.专家PID记得是PID的高级设置,某些个场合一般的PID无法使用,出现了了专用的,有特殊功能的.记忆中是这…

防火墙的ISP选路

拓补图: 实验目的: 让R1走ISP1的路径访问192.168.1.1,R2走ISP2的路径访问172.16.1.1 1. IP地址的配置略 2. 防火墙区域的划分(防火墙的g1/0/2接口是属于ISP1接口,所以需要自己新建一个区域然后添加接口,…

测试界的飞虎队:测试人才战略——测试行业的精英战略(学习了)

一、前言 提到飞虎队,大家第一印象就是精英。相信绝大多数公司都希望能组件出一支优秀的测试队伍,来支撑自己的业务,很多公司都喊出了精英化战略。既然如此,就命中一个话题--测试人才战略。 有几个问题是不得不面对的&#xff1a…

算法 - 组合

目录 题目来源 题目描述 示例 提示 题目解析 算法源码 剪枝优化 题目来源 77. 组合 - 力扣(LeetCode) 题目描述 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 输入&#…

JavaScript——关于JavaScript、在HTML中嵌入JS代码的三种方式、变量

前言 近日无意间透过装了热水之后,散发出水蒸气的透明水杯看东西时,发现看到的东西呈现模糊效果,这种效果和毛玻璃效果类似。毛玻璃效果在web、手机系统上也有很多应用,如网页上的广告弹窗,手机系统的消息通知界面等等…

LeetCode刷题复盘笔记——131. 分割回文串(一文搞懂回溯解决经典的分割回文串问题)

今日主要总结一下,131. 分割回文串 题目:131. 分割回文串 Leetcode题目地址 题目描述: 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读…

目标检测——day46 可转移交互性知识的人机交互检测

Transferable Interactiveness Knowledge for Human-Object Interaction Detection论文pdf下载(含笔记)Transferable Interactiveness Knowledge for Human-Object Interaction Detection1 INTRODUCTION3 PRELIMINARY4 METHOD4.1 Overview4.2 Representa…

JVM——类加载子系统

文章目录一、类加载器子系统作用二、类加载过程1、加载(Loading)2、验证(Verification)3、准备(Preparation)4、解析(Resolution)5、初始化(Initialization)三…

SpringCloud微服务实践之三 创建子项目UserService

创建子项目UserService,并将服务注册到Eureka UserService子项目作为用户信息的服务提供方,通过本项目,可以实现对基于Docker运行的mysql数据库表的读取。 1、在父项目上点击鼠标右键选择new→Module: 过程同上,略过…

基于jeecgboot的flowable驳回修改以及发起人设置

昨晚升级代码生成器&#xff0c;支持生成权限注解和菜单的SQL,修改驳回bug,以后保存流程强制要求第一个用户任务节点必须是发起人节点。 1、前端增加发起人设置 <el-radio label"INITIATOR">发起人</el-radio> 相应代码 if (this.containsKey(this.bpmn…

MybatisPlus【SpringBoot】 3 基本CRUD

MybatisPlus【SpringBoot】 【【尚硅谷】2022版MyBatisPlus教程&#xff08;一套玩转mybatis-plus&#xff09;】 3 基本CRUD 文章目录MybatisPlus【SpringBoot】3 基本CRUD3.1 BaseMapper3.2 插入3.3 删除3.3.1 通过id 删除记录3.3.2 通过id 批量删除记录3.3.3 通过map 条件…

【Svelte】-(7)绑定|Each 块绑定 / audio video 媒体标签绑定 / client offset 尺寸绑定 / this / 组件绑定

文章目录Each 块绑定媒体标签绑定尺寸绑定this组件绑定Each 块绑定 您也可以在 Each 的过程中使用。 不过需要注意的是&#xff0c;与这些 <input> 交互会改变数组。当要使用不可变数据&#xff0c;应该去避免使用这些绑定&#xff0c;并且改用事件来处理这些内容。 <…

nvm切换node版本

在实际的前端开发过程中&#xff0c;可能会经常遇见 node.js 的版本问题&#xff0c;不同的项目需要使用不同的 node.js 版本。比如Vue2和Vue3需要的Node版本不一样。 地址&#xff1a;https://github.com/coreybutler/nvm-windows/releases 注意&#xff1a;安装之前必须完…

[LCT刷题][树链信息维护] P4332 [SHOI2014]三叉神经树

写在前面 把黑题看成蓝题结果想了老半天感觉不对劲 本题对于理解SplaySplaySplay和LCTLCTLCT结构具有至关重要的意义&#xff0c;值得反复思考。 可能因为我比较菜 题目思路 题目给定一个类似神经网络的东西&#xff0c;每个节点都具有激活层、三输入单输出&#xff0c;输…

node.js+vue+Web的疫情大数据平台分析系统

以往的疫情防控管理事务处理主要使用的是传统的人工管理方式&#xff0c;这种管理方式存在着管理效率低、操作流程繁琐、保密性差等缺点&#xff0c;长期的人工管理模式会产生大量的文本文件与文本数据&#xff0c;这对事务的查询、更新以及维护带来不少困难。随着互联网时代的…