VAE-根据李宏毅视频总结的最通俗理解

news/2024/5/13 20:05:51/文章来源:https://blog.csdn.net/m0_47005029/article/details/131940845

1.VAE的直观理解

先简单了解一下自编码器,也就是常说的Auto-EncoderAuto-Encoder包括一个编码器(Encoder)和一个解码器(Decoder)。其结构如下:

自编码器是一种先把输入数据压缩为某种编码, 后仅通过该编码重构出原始输入的结构. 从描述来看, AE是一种无监督方法.

AE的结构非常明确, 需要有一个压缩编码的Encoder和就一个相应解码重构的Decoder

那么VAE的目标是什么?为什么VAE呢?

-------VAE作为一个生成模型,其基本思路是很容易理解的:把一堆真实样本通过编码器网络变换成一个理想的数据分布,然后这个数据分布再传递给一个解码器网络,得到一堆生成样本,生成样本与真实样本足够接近的话,就训练出了一个自编码器模型。

为什么要用VAE,原来的Auto Encoder有什么问题呢?那面下面是一个直观的解释。

下图是 AutoEncoder 的简单例子:我们把一张满月的图片 Encoder 后得到 code,这个code被decoder 后又转换为满月图,弦月图也是如此。注意它们直接的一对一关系。图片左边那个问号的意思是当对 AE 中的code进行随机采样时,它介于满月与弦月之间的数据,decoder后可能会输出什么?
-------------可能会输出满月,可能会输出弦月,但是最有可能输出的是奇奇怪怪的图片。

下图是 VAE 的简单例子,我们在 code 中添加一些 noise,这样可以让在满月对应 noise 范围内的code 都可以转换为满月,弦月对应的noise 范围内的code也能转换成弦月。但当我们在不是满月和弦月对应的noise的code中采样时,decoder出来的图片可能是介于满月和弦月之间的图。也就是说,VAE 产生了输入数据中不包含的数据,(可以认为产生了含有某种特定信息的新的数据),而 AE 只能产生尽可能接近或者就是以前的数据(当数据简单时,编码解码损耗少时)。

2.VAE的模型直观展示

在VAE中,为了给编码添加合适的噪音,编码器会输出两个编码,一个是原有编码 m 1 , m 2 , m 3 m_1,m_2,m_3 m1,m2,m3,另外一个是控制噪音干扰程度的编码 σ 1 , σ 2 , σ 3 \sigma_1,\sigma_2,\sigma_3 σ1,σ2,σ3,第二个编码其实很好理解,就是为随机噪音码 e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3分配权重,然后加上exp的目的是为了保证这个分配的权重是个正值,最后将原编码与噪音编码相加,就得到了VAE在code层的输出结果 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3

损失函数方面,除了必要的重构损失外,VAE还增添了一个损失函数,这同样是必要的部分,因为如果不加的话,整个模型就会出现问题:为了保证生成图片的质量越高,编码器肯定希望噪音对自身生成图片的干扰越小,于是分配给噪音的权重越小,这样只需要将 σ 1 , σ 2 , σ 3 \sigma_1,\sigma_2,\sigma_3 σ1,σ2,σ3赋为接近负无穷大的值就好了。所以,第二个损失函数就有限制编码器走这样极端路径的作用,这也从直观上就能看出来, e x p ( σ i ) − ( 1 + σ i ) exp(\sigma_i)-(1+\sigma_i) exp(σi)(1+σi)在x=0处取得最小值,于是 σ 1 , σ 2 , σ 3 \sigma_1,\sigma_2,\sigma_3 σ1,σ2,σ3就会避免被赋值为负无穷大。

3.VAE的基本原理

那先回到我们到底想做什么?我们现在是想要生成图片,就拿下图距离,每张图片可以看做高维空间的一个点,然后这些图片符合一个分布P(x),我们要做的事情就是去预测这个高维空间的概率分布P(x),只要我们知道这个分布我们就可以从中sample然后得到图片。

那如何去知道这个分布呢?我们先了解一下什么是高斯混合模型?------------即任何一个数据的分布,都可以看作是若干高斯分布的叠加。

上图中黑色代表的是P(x)分布,蓝色的线都是不同的高斯分布,我们可以用若干个高斯分布去拟合P(x),那如果我们想要从P(x)去sample一个东西,那我们就要去考虑我们是从哪个高斯分布中去sample。然后这个这个过程可以表示为下图

其中最下面的代表的是高斯分布,m代表的是第几个高斯分布,蓝色的柱状图即P(m)代表的是去选择某一个高斯分布(m)的概率,所以P(x)可以表示为黄色标记所示,每个m对应的高斯分布有自己的均值和方差。

现在我们借助一个变量$ z\sim N(0,I)$ ,(注意z是一个向量,生成自一个高斯分布),找一个映射关系,将向量z映射成这一系列高斯分布的参数向量 μ ( z ) \mu (z) μ(z)和$ \sigma (z)$。有了这一系列高斯分布的参数我们就可以得到叠加后的P(x)的形式。也就是说我们只要知道每个高斯分布的参数,我们就能用它拟合P(x)

那么现在 P ( x ) = ∫ P ( z ) P ( x ∣ z ) d z ( 1 ) P(x) = ∫P(z)P(x∣z)dz \quad(1) P(x)=P(z)P(xz)dz(1) , 其中 z ∼ N ( 0 , I ) , x ∣ z ∼ N ( μ ( z ) , σ ( z ) ) z \sim N(0,I), \quad x|z \sim N \big(\mu(z), \sigma(z)\big) zN(0,I),xzN(μ(z),σ(z))

接下来就可以求解这个式子。由于P(z)是已知的,P(x|z)未知,而 x ∣ z ∼ N ( μ ( z ) , σ ( z ) ) x|z \sim N \big(\mu(z), \sigma(z)\big) xzN(μ(z),σ(z)),于是我们真正需要求解的,是 μ ( z ) \mu (z) μ(z)和$ \sigma (z)$两个函数的表达式。很难直接计算积分部分,因为我们很难穷举出所有的向量z用于计算积分,我们需要引入两个神经网络来帮助我们求解。

  • 第一个神经网络在VAE叫做Decoder,它求解的 μ ( z ) \mu (z) μ(z)和$ \sigma (z)$和两个函数,这等价于求解P(x|z)。

  • 第二个神经网络在VAE叫做Encoder,它求解的结果是 q ( z ∣ x ) , z ∣ x ∼ N ( μ ′ ( x ) , σ ′ ( x ) ) q(z∣x), z|x \sim N\big(\mu^\prime(x), \sigma^\prime(x)\big) q(zx)zxN(μ(x),σ(x)),q可以代表任何分布。它主要是用来得到给定一个 x 然后得到对应 z 的 μ ′ ( x ) , σ ′ ( x ) \mu^\prime(x), \sigma^\prime(x) μ(x),σ(x)

这儿引入第二个神经网络Encoder的目的是,辅助第一个Decoder求解P(x|z)

现在梳理一下我们的目的,我们需要求P(x),然后P(x)可以表示为:

P ( x ) = ∫ P ( z ) P ( x ∣ z ) d z P(x) = ∫P(z)P(x∣z)dz P(x)=P(z)P(xz)dz

我们希望P(x)越大越好,等价于求

M a x m i z e L = ∑ x l o g P ( x ) Maxmize L = \sum_x logP(x) MaxmizeL=xlogP(x)

又因为

log ⁡ P ( x ) = ∫ z q ( z ∣ x ) log ⁡ P ( x ) d z \log P(x) = \int_z q(z|x) \log P(x) dz logP(x)=zq(zx)logP(x)dz

因为 ∫ z q ( z ∣ x ) d z = 1 \int_z q(z|x) dz = 1 zq(zx)dz=1

所以

log ⁡ P ( x ) = ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) P ( z ∣ x ) d z = ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) q ( z ∣ x ) P ( z ∣ x ) d z = ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) d z + ∫ z q ( z ∣ x ) log ⁡ q ( z ∣ x ) P ( z ∣ x ) d z = D K L ( q ( z ∣ x ) ∣ ∣ P ( z ∣ x ) ) + ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) d z ≥ ∫ z q ( z ∣ x ) log ⁡ P ( x ∣ z ) P ( z ) q ( z ∣ x ) d z since  D K L ( q ∣ ∣ P ) ≥ 0 \begin{aligned} \log P(x) &= \int_z q(z|x) \log \frac{P(z,x)}{P(z|x)} dz \\ &= \int_z q(z|x) \log \frac{P(z,x)q(z|x)}{q(z|x)P(z|x)} dz \\ &= \int_z q(z|x) \log \frac{P(z,x)}{q(z|x)} dz + \int_z q(z|x) \log \frac{q(z|x)}{P(z|x)} dz \\ &= D_{KL}(q(z|x) || P(z|x)) + \int_z q(z|x) \log \frac{P(z,x)}{q(z|x)} dz \\ &\geq \int_z q(z|x) \log \frac{P(x|z)P(z)}{q(z|x)} dz \quad \text{since } D_{KL}(q||P) \geq 0 \end{aligned} logP(x)=zq(zx)logP(zx)P(z,x)dz=zq(zx)logq(zx)P(zx)P(z,x)q(zx)dz=zq(zx)logq(zx)P(z,x)dz+zq(zx)logP(zx)q(zx)dz=DKL(q(zx)∣∣P(zx))+zq(zx)logq(zx)P(z,x)dzzq(zx)logq(zx)P(xz)P(z)dzsince DKL(q∣∣P)0

我们将 ∫ z q ( z ∣ x ) log ⁡ P ( x ∣ z ) P ( z ) q ( z ∣ x ) d z \int_z q(z|x) \log \frac{P(x|z)P(z)}{q(z|x)} dz zq(zx)logq(zx)P(xz)P(z)dz 称为 log ⁡ P ( x ) \log P(x) logP(x) 的 (variational) lower bound (变分下界),简称为 L b L_b Lb

即 原式化简为 l o g P ( x ) = L b + K L ( q ( z ∣ x ) ∣ ∣ p ( z ∣ x ) ) log P(x) = L_b + KL(q(z|x)||p(z|x)) logP(x)=Lb+KL(q(zx)∣∣p(zx))

原本,我们需要求 P ( x ∣ z ) P(x|z) P(xz) 使得 l o g P ( x ) log P(x) logP(x) 最大,现在引入了一个 q ( z ∣ x ) q(z|x) q(zx),变成了同时求 P ( x ∣ z ) P(x|z) P(xz) q ( z ∣ x ) q(z|x) q(zx)使得 l o g P ( x ) log P(x) logP(x)最大。实际上,因为后验分布 P ( z ∣ x ) P(z|x) P(zx) 很难求 (intractable),所以才用 q ( z ∣ x ) q(z|x) q(zx) 来逼近这个后验分布。在优化的过程中我们发现,首先 q ( z ∣ x ) q(z|x) q(zx) log ⁡ P ( x ) \log P(x) logP(x) 是完全没有关系的, log ⁡ P ( x ) \log P(x) logP(x) 只跟 P ( z ∣ x ) P(z|x) P(zx) 有关,调节 q ( z ∣ x ) q(z|x) q(zx) 是不会影响似然也就是 log ⁡ P ( x ) \log P(x) logP(x) 的。所以,当我们固定住 P ( x ∣ z ) P(x|z) P(xz) 时,调节 q ( z ∣ x ) q(z|x) q(zx) 最大化下界 L b L_b Lb,KL 则越小。当 q ( z ∣ x ) q(z|x) q(zx) 逼近后验分布 P ( z ∣ x ) P(z|x) P(zx) 时,KL 散度趋于为 0, log ⁡ P ( x ) \log P(x) logP(x) 就和 L b L_b Lb 等价。所以最大化 log ⁡ P ( x ) \log P(x) logP(x) 就等价于最大化 L b L_b Lb

现在我们来求 Maxmize L b L_b Lb

L b = ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) d z = ∫ z q ( z ∣ x ) log ⁡ P ( x ∣ z ) P ( z ) q ( z ∣ x ) d z = ∫ z q ( z ∣ x ) log ⁡ P ( z ) q ( z ∣ x ) d z + ∫ z q ( z ∣ x ) log ⁡ P ( x ∣ z ) d z = − D K L ( q ( z ∣ x ) ∣ ∣ P ( z ) ) + E q ( z ∣ x ) [ log ⁡ P ( x ∣ z ) ] \begin{aligned} L_b &= \int_z q(z|x) \log \frac{P(z,x)}{q(z|x)} dz \\ &= \int_z q(z|x) \log \frac{P(x|z)P(z)}{q(z|x)} dz \\ &= \int_z q(z|x) \log\frac {P(z)}{q(z|x)} dz +\int_z q(z|x) \log P(x|z) dz \\ &= -D_{KL}(q(z|x) || P(z)) + E_{q(z|x)}[\log P(x|z)] \end{aligned} Lb=zq(zx)logq(zx)P(z,x)dz=zq(zx)logq(zx)P(xz)P(z)dz=zq(zx)logq(zx)P(z)dz+zq(zx)logP(xz)dz=DKL(q(zx)∣∣P(z))+Eq(zx)[logP(xz)]

所以,求解 Maxmize L b L_b Lb,等价于求解KL(q(z|x)||P(z))的最小值和==$ E_{q(z|x)}[\log P(x|z)]$的最大值。==

  • 我们先来求第一项,其实 − D K L ( q ( z ∣ x ) ∣ ∣ P ( z ) ) -D_{KL}(q(z|x) || P(z)) DKL(q(zx)∣∣P(z))的展开式刚好等于: ∑ i = 1 J ( e x p ( σ i ) − ( 1 − σ i ) + ( m i ) 2 ) \sum _{i=1}^J (exp(\sigma_i)-(1-\sigma_i)+(m_i)^2) i=1J(exp(σi)(1σi)+(mi)2),于是,第一项式子就是第二节VAE模型架构中第二个损失函数的由来,其实就是去调节NN’使得到的q(z|x)与标准正态分布约接近越好

  • 接下来求第二项,注意到Maxmize$ E_{q(z|x)}[\log P(x|z)]$,也就是表明在给定求q(z|x)(编码器输出)的情况下p(x|z)(解码器输出)的值尽可能高,这其实就是一个类似于Auto-Encoder的损失函数(方差忽略不计的话),过程如下图所示:

    • 我们要想从q(z|x)中sample一个data,就将x输入到NN中,产生 μ ′ ( x ) , σ ′ ( x ) \mu^\prime(x), \sigma^\prime(x) μ(x),σ(x),然后产生z,接下来我们要maxmize z产生x的几率,即要想输出maxmize log P(x|z)就需要让NN的输出 μ ( x ) \mu(x) μ(x) 与 x越接近越好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_335869.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Jenkins系列】-Pipeline语法全集

Jenkins为您提供了两种开发Pipeline的方式:脚本式和声明式。 脚本式流水线(也称为“传统”流水线)基于Groovy作为其特定于域的语言。而声明式流水线提供了简化且更友好的语法,并带有用于定义它们的特定语句,而无需学习…

记一次安装nvm切换node.js版本实例详解

最后效果如下: 背景:由于我以前安装过node.js,后续想安装nvm将node.js管理起来。 问题:nvm-use命令行运行成功,但是nvm-list显示并没有成功。 原因:因为安装过node.js,所以原先的node.js不收n…

STM32 USB使用记录:HID类设备(后篇)

文章目录 目的基础说明项目构建与代码调整接收发送代码与测试示例链接报告描述符总结 目的 接上篇: 《STM32 USB使用记录:HID类设备(前篇)》 USB HID 类的设备有个比较大的好处是大部分时候接入主机中都是可以免驱使用的。这篇文…

spring 存储对象 + 获取对象

前言 本篇在spring中如何使用五大类注释与方法注释将对象加入IOC容器中,了解如何使用注释来获取容器中的Bean对象,如有错误,请在评论区指正,让我们一起交流,共同进步! 文章目录 前言1.通过注释将类加入IoC…

【LeetCode每日一题】——946.验证栈序列

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 栈 二【题目难度】 中等 三【题目编号】 946.验证栈序列 四【题目描述】 给定 pushed 和 p…

Kyuubi入门简介

一、官方简介 HOME — Apache Kyuubi 二、概述 1、一个企业级数据湖探索平台 2、一个高性能的通用JDBC和SQL执行引擎 3、一个基于spark的查询引擎服务 三、优点 1、提供hiveserver2查询spark sql的能力,查询效率更为高效,首次构建连接时会持续保持连…

FANUC机器人SRVO-050碰撞检测报警和SRVO-053干扰值过大故障报警总结

FANUC机器人SRVO-050碰撞检测报警和SRVO-053干扰值过大故障报警总结 前面和大家分享了关于SRVO-050碰撞检测报警和SRVO-053干扰值过大的原因分析以及处理方法,感兴趣的朋友可以参考以下链接中的内容: FANUC机器人SRVO-050碰撞检测报警原因分析及处理对策

【ArcGIS Pro二次开发】(54):三调名称转用地用海名称

三调地类和用地用海地类之间有点相似但并不一致。 在做规划时,拿到的三调,都需要将三调地类转换为用地用海地类,然后才能做后续的工作。 一般情况下,三调转用地用海存在【一对一,多对一和一对多】3种情况。 前2种情况…

ROS从入门到精通6-8:costmap代价地图插件编写案例(prohibition_layer)

目录 0 专栏介绍1 为什么需要代价地图插件?2 自定义代价地图插件3 仿真测试 0 专栏介绍 本专栏旨在通过对ROS的系统学习,掌握ROS底层基本分布式原理,并具有机器人建模和应用ROS进行实际项目的开发和调试的工程能力。 🚀详情&…

2023年的深度学习入门指南(20) - LLaMA 2模型解析

2023年的深度学习入门指南(20) - LLaMA 2模型解析 上一节我们把LLaMA 2的生成过程以及封装的过程的代码简单介绍了下。还差LLaMA 2的模型部分没有介绍。这一节我们就来介绍下LLaMA 2的模型部分。 这一部分需要一些深度神经网络的基础知识,不懂的话不用着急&#xf…

向npm注册中心发布包(下)

目录 1、在package.json文件中指定dependencies和devDependencies 1.1 将依赖项添加到 package.json 文件 1.2 从命令行中 将依赖项添加到 package.json 文件 1.3 手动编辑 package.json 文件 2、关于语义版本控制 2.1 在已发布的包中增加语义版本 2.2 使用语义版本控制…

Vue实现柱状图横向自动滚动

Vue实现柱状图横向自动滚动 1. 前言2. 代码3、实现效果图 1. 前言 原理:通过定时器修改Echarts的配置(options)达到我们想要的效果。 此外,我们还需要了解Echarts中dataZoom这个组件,这个组件用于:用于区域…

探究Spring Bean的六种作用域:了解适用场景和使用方式

这里写目录标题 单例(Singleton)作用域:原型(Prototype)作用域:请求(Request)作用域:会话(Session)作用域:全局(applicati…

MySQL绿色安装和配置

1、 从地址http://dev.mysql.com/downloads/mysql/中选择windows的版本下载。 2、 mysql各个版本的简介 (1) MySQL Community Server 社区版本,开源免费,但不提供官方技术支持。 (2) MySQL Enterprise Ed…

文件上传--题目

之前有在技能树中学过文件上传,正好借这次进行一个整合: 技能树中所包含的题目类型有 无限制绕过 1.上传一句话木马 2.链接中国蚁剑 前端验证 1.会发现这个网站不让提交php,改后缀为jpg格式,再用burp抓包 2.在用中国蚁剑连接 .…

[start] m40 test

software & update 470 drive version # cd /etc/apt # mv sources.list sources.list.bak # sudo vi /etc/apt/sources.list # 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ ja…

Linux搭建Promtail + Loki + Grafana 轻量日志监控系统

一、简介 日志监控告警系统,较为主流的是ELK(Elasticsearch 、 Logstash和Kibana核心套件构成),虽然优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦…

【代码随想录day20】验证二叉搜索树

题目 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。 节点的右子树只包含 大于 当前节点的数。 所有左子树和右子树自身必须也是二叉搜索树。 思路 最开始想简单…

htmlCSS-----定位

目录 前言 定位 分类和取值 定位的取值 1.相对定位 2.绝对位置 元素居中操作 3.固定定位 前言 今天我们来学习html&CSS中的元素的定位,通过元素的定位我们可以去更好的将盒子放到我们想要的位置,下面就一起来看看吧! 定位 定位posi…

安全技术-大数据平台安全防护技术

一、大数据基本概念及背景 1.1大数据发展的背景-数据爆炸 伴随着互联⽹、物联⽹、电⼦商务、社交媒体、现代物流、⽹络⾦融等⾏业的发展,全球数据总量正呈⼏何级数增长,过去⼏年时间产⽣的数据总量超过了⼈类历史上的数据总和,预计2020年全…