C#,码海拾贝(18)——矩阵的(一般)三角分解法(Triangular Decomposition)之C#源代码,《C#数值计算算法编程》源代码升级改进版

news/2024/4/27 10:12:18/文章来源:https://blog.csdn.net/beijinghorn/article/details/130038339

 

1 三角分解法 Triangular Decomposition

三角分解法亦称因子分解法,由消元法演变而来的解线性方程组的一类方法。设方程组的矩阵形式为Ax=b,三角分解法就是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U之积:A=LU,然后依次解两个三角形方程组Ly=b和Ux=y,而得到原方程组的解,例如,杜利特尔分解法、乔莱斯基分解法等就是三角分解法。

若能通过正交变换,将系数矩阵A分解为A=LU,其中L是单位下三角矩阵(主对角线元素为1的下三角矩阵),而U是上三角矩阵,则线性方程组Ax=b变为LUx=b,若令Ux=y,则线性方程组Ax=b的求解分为两个三角方程组的求解:
(1)求解Ly=b,得y;
(2)再求解Ux=y,即得方程组的解x;
因此三角分解法的关键问题在于系数矩阵A的LU分解。
矩阵能LU分解的充分条件编辑 播报
一般地,任给一个矩阵不一定有LU分解,下面给出一个矩阵能LU分解的充分条件。
定理1 对任意矩阵 ,若A的各阶顺序主子式均不为零,则A有唯一的Doolittle分解(或Crout分解)。
定理2 若矩阵 非奇异,且其LU分解存在,则A的LU分解是唯一的。

三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求逆矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。


 

2 三角分解法C#源程序

using System;namespace Zhou.CSharp.Algorithm
{/// <summary>/// 矩阵类/// 作者:周长发/// 改进:深度混淆/// https://blog.csdn.net/beijinghorn/// </summary>public partial class Matrix{/// <summary>/// 矩阵的三角分解,分解成功后,原矩阵将成为Q矩阵/// </summary>/// <param name="src">源矩阵</param>/// <param name="mtxL">分解后的L矩阵</param>/// <param name="mtxU">分解后的U矩阵</param>/// <returns>求解是否成功</returns>public static bool SplitLU(Matrix src, Matrix mtxL, Matrix mtxU){int i, j, k, w, v, z;// 初始化结果矩阵if (mtxL.Init(src.Columns, src.Columns) == false || mtxU.Init(src.Columns, src.Columns) == false){return false;}for (k = 0; k <= src.Columns - 2; k++){z = k * src.Columns + k;if (Math.Abs(src[z]) < float.Epsilon){return false;}for (i = k + 1; i <= src.Columns - 1; i++){w = i * src.Columns + k;src[w] = src[w] / src[z];}for (i = k + 1; i <= src.Columns - 1; i++){w = i * src.Columns + k;for (j = k + 1; j <= src.Columns - 1; j++){v = i * src.Columns + j;src[v] = src[v] - src[w] * src[k * src.Columns + j];}}}for (i = 0; i <= src.Columns - 1; i++){for (j = 0; j < i; j++){w = i * src.Columns + j;mtxL[w] = src[w];mtxU[w] = 0.0;}w = i * src.Columns + i;mtxL[w] = 1.0;mtxU[w] = src[w];for (j = i + 1; j <= src.Columns - 1; j++){w = i * src.Columns + j;mtxL[w] = 0.0;mtxU[w] = src[w];}}return true;}}
}

POWER BY 315SOFT.COM & TRUFFER.CN

附:

There are essentially two ways to solve the ensuing matrix Eq. (6) that results from the integral equation by MOM: (i) a direct solver that seeks the inversion of the matrix equation, and (ii) an iterative solver for the solution of the matrix equation. A direct solver of the matrix equation can be Gaussian elimination, or lower-upper-triangular decomposition (LUD). The number of operations is proportional to O(N3), while the matrix storage requirement is of O(N2). An iterative method to solve a matrix equation can either be Gauss–Seidel, Jacobi relaxation, conjugate gradient, or the derivatives of the conjugate gradient algorithm [9]. All iterative methods require the performance of a matrix–vector product, which usually is the bottleneck of the computation. For dense matrices, such a matrix–vector product requires operations of O(N2). If the matrix equation is solved in Niter iterations, the computational cost is proportional to NiterN2. Moreover, traditional iterative solvers require the generation and storage of the matrix itself.
 

Cholesky decomposition or factorization is a form of triangular decomposition that can only be applied to either a positive definite symmetric matrix or a positive definite Hermitian matrix. A symmetric matrix A is said to be positive definite if Ax>0 for any non-zero x. Similarly, if A is Hermitian, then Ax>0 . A more useful definition of a positive definite matrix is one that has all eigenvalues greater than zero. 
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_285833.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字化体验时代,企业如何做好内部知识数字化管理

随着数字化时代的到来&#xff0c;企业内部的知识管理也面临着新的挑战和机遇。数字化技术的应用&#xff0c;可以极大地提高企业内部知识的数字化管理效率和质量&#xff0c;从而提升企业内部的工作效率、员工满意度和企业竞争力。本文将从数字化时代的背景出发&#xff0c;探…

大数据 | HBase基本工作原理

前文回顾&#xff1a;MapReduce基本原理 目录 &#x1f4da;HBase基本介绍 &#x1f407;HBase的设计目标和功能特点 &#x1f407;HBase在Hadoop中的生态环境 &#x1f4da;HBase的数据模型 &#x1f407;逻辑数据模型 &#x1f407;物理存储格式 &#x1f4da;HBase基…

使用golang连接kafka

1 下载&#xff0c;配置&#xff0c;启动 kafka 下载链接 配置修改 在config目录下的server文件和zookeeper文件&#xff0c;其中分别修改kafka的日志保存路径和zookeeper的数据保存路径。 启动kafka 先启动kafka自带的zookeeper&#xff0c;在kafka的根目录下打开终端&a…

教程 | 多通道fNIRS数据的预处理和平均(下)

前言 前文近红外数据的预处理和平均&#xff08;上&#xff09;提到fNIRS是一种评估氧和脱氧血红蛋白浓度变化的方法&#xff0c;可与fMRI相媲美。fNIRS的不足是它的空间分辨率比fMRI差&#xff0c;但其优点是有更高的时间分辨率&#xff0c;并允许测量无法通过fMRI扫描仪测试…

VsCode 将源代码管理中的新旧代码上下对比变为左右对比

文章目录一、默认设置二、左右布局变成了上下布局三、解决方法&#xff1a;将上下布局改为左右布局1&#xff1a;找到右上角的更多设置2&#xff1a;点击更多设置后点击【切换到并排视图】3&#xff1a;效果如下&#xff08;还是原来的效果&#xff09;四、左右切换成上下总结一…

Python与各种开发语言比较、对比优略

选择要学习的技术和选择要上的大学一样重要&#xff0c;如果选错了&#xff0c;你将来不仅得不到自己喜欢的高薪工作&#xff0c;反而会弄得一堆麻烦。如果你打开了这篇文章&#xff0c;说明你已经考虑选择Python开发作为你以后的职业了。在这篇文章里&#xff0c;我们会详细找…

stata变量引用

stata变量引用–潘登同学的stata笔记 文章目录stata变量引用--潘登同学的stata笔记变量生成gen命令通配符&#xff1a;*, ?, -因子变量时间序列变量命名、前缀与标签变量命名、添加前缀通配符与批量重命名变量标签数字-文字对应表CSMAR数据处理查看、查找变量单值、暂元单值暂…

超详细!腾讯NLP算法岗面经(已offer)

作者 | ZipZou整理 | NewBeeNLP面试锦囊之面经分享系列&#xff0c;持续更新中 可以后台回复"面试"加入交流讨论组噢分享一篇旧文&#xff0c;希望大家都成功上岸~写在前面首先来段简单的自我介绍&#xff1a;2021届硕士&#xff0c;硕士期间未有实习经历&#xff0c…

FE_CSS 页面布局之浮动

网页布局的本质——用 CSS 来摆放盒子。 把盒子摆放到相应位置。CSS 提供了三种传统布局方式(简单说,就是盒子如何进行排列顺序)&#xff1a; 普通流&#xff08;标准流&#xff09;浮动定位 1 标准流&#xff08;普通流/文档流&#xff09; 所谓的标准流: 就是标签按照规定…

Runtime命令参数字符串和数组比较

问题 最近有个问题本地执行 ssh -p 8084 root10.224.122.51 \"ssh -p 22 root192.168.5.157 mkdir -p /opt/dw-release/pdld-admin\"程序执行总是报错&#xff1a; No such file or directory 但是直接在终端执行正常&#xff0c;这就很奇怪。肯定能推出是程序执行…

10.1 二重积分的概念与性质

学习目标&#xff1a; 学习二重积分&#xff0c;我会采取以下几个步骤&#xff1a; 了解基本概念&#xff1a;首先我会学习二重积分的定义及其意义&#xff0c;了解二重积分的性质和特点&#xff0c;以及二重积分的计算方法。 理解二重积分的几何意义&#xff1a;我会通过画图…

【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

LeetCode——二叉树的非递归遍历

144. 二叉树的前序遍历 给你二叉树的根节点root&#xff0c;返回它节点值的前序遍历。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,2,3] 示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[] 示例 3&#xff1a; 输入&#xff1…

PDF怎么转CAD文件?(免费!高效转换方法汇总)

一般而言&#xff0c;PDF图纸是不能修改的。若需修改&#xff0c;则需将PDF转CAD&#xff0c;此时如何满足PDF转CAD的需求呢&#xff1f;今天&#xff0c;我将教你两种免费的PDF转CAD的方法&#xff0c;助力高效办公。 1.本地软件转换法 这是用本地软件转换方法&#xff0c;支…

JVM之GC日志解读

通过阅读Gc日志&#xff0c;我们可以了解Java虚拟机内存分配与回收策略。 内存分配与垃圾回收的参数列表 -XX:PrintGC 输出GC日志。类似&#xff1a;-verbose:gc-XX:PrintGCDetails 输出GC的详细日志-XX:PrintGCTimestamps 输出GC的时间戳&#xff08;以基准时间的形式&#xf…

软件企业利用ChatGPT的正确姿势

先来看一下现在市场环境 ChatGPT作为现象级产品横空出世之后&#xff0c;极大地带动了大语言模型产业和生成式AI&#xff08;AIGC&#xff09;产业的蓬勃发展。海外市场上&#xff0c;OpenAI、微软、谷歌、Meta等巨头动作频频。中国市场更是风起云涌&#xff0c;百度、阿里、华…

Golang每日一练(leetDay0034) 二叉树专题(3)

目录 100. 相同的树 Same Tree &#x1f31f; 101. 对称二叉树 Symmetric Tree &#x1f31f; 102. 二叉树的层序遍历 Binary Tree Level-order Traversal &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一…

Talk预告 | 清华大学交叉信息研究院助理教授赵行:基于视觉感知的自动驾驶运动预测

本期为TechBeat人工智能社区第481期线上Talk&#xff01; 北京时间3月15日(周三)20:00&#xff0c;清华大学交叉信息研究院助理教授——赵行的Talk将准时在TechBeat人工智能社区开播&#xff01; 他与大家分享的主题是: “基于视觉感知的自动驾驶运动预测”&#xff0c;届时将…

AIGC大模型时代下,该如何应用高性能计算PC集群打造游戏开发新模式?

ACT | SIM | ETC | FTG | RAC AVG | RPG | FPS | MUG | PUZ ACT、SIM、ETC、FTG、RAC、RTS、STG、AVG、RPG、FPS、MUG、PUZ、SLG、SPG等游戏类型&#xff0c;需要高性能的计算机来支持运行。为了满足这些游戏的需求&#xff0c;国内服务器厂商不断推出新的产品&#xff0c;采用…

AD20的PCB布线规则设定

目录 1、最小安全间距 2、线宽规则 3、过孔 4、盖油工艺设计 5、内电层焊盘模式设置 6、反焊盘间距设计 7、焊盘与覆铜连接类型 AD20的规则库设定是PCB布线的首要工作&#xff0c;在布线初期就要设置好&#xff0c;布线的过程中还需要动态的变更&#xff0c;因此本篇总结了PCB的…