JVM之GC日志解读

news/2024/4/27 14:22:54/文章来源:https://blog.csdn.net/m0_62436868/article/details/130103036

通过阅读Gc日志,我们可以了解Java虚拟机内存分配与回收策略。 内存分配与垃圾回收的参数列表

  • -XX:+PrintGC 输出GC日志。类似:-verbose:gc
  • -XX:+PrintGCDetails 输出GC的详细日志
  • -XX:+PrintGCTimestamps 输出GC的时间戳(以基准时间的形式)
  • -XX:+PrintGCDatestamps 输出GcC的时间戳(以日期的形式,如2013-05-04T21:53:59.234+0800)
  • -XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息
  • -Xloggc:../logs/gc.log 日志文件的输出路径

打开GC日志

-verbose:gc

这个只会显示总的GC堆的变化,如下: 

[GC (Allocation Failure) 80832K->19298K(227840K),0.0084018 secs]
[GC (Metadata GC Threshold) 109499K->21465K(228352K),0.0184066 secs]
[Full GC (Metadata GC Threshold) 21465K->16716K(201728K),0.0619261 secs]

参数解析 

GC、Full GC:GC的类型,GC只在新生代上进行,Full GC包括永生代,新生代,老年代。
Allocation Failure:GC发生的原因。
80832K->19298K:堆在GC前的大小和GC后的大小。
228840k:现在的堆大小。
0.0084018 secs:GC持续的时间。

打开GC日志 

-verbose:gc -XX:+PrintGCDetails 

[GC (Allocation Failure) [PSYoungGen:70640K->10116K(141312K)] 80541K->20017K(227328K),0.0172573 secs] [Times:user=0.03 sys=0.00,real=0.02 secs]


[GC (Metadata GC Threshold) [PSYoungGen:98859K->8154K(142336K)] 108760K->21261K(228352K),0.0151573 secs] [Times:user=0.00 sys=0.01,real=0.02 secs]


[Full GC (Metadata GC Threshold)[PSYoungGen:8154K->0K(142336K)]


[ParOldGen:13107K->16809K(62464K)] 21261K->16809K(204800K)]

[Metaspace:20599K->20599K(1067008K)],0.0639732 secs]
[Times:user=0.14 sys=0.00,real=0.06 secs] 

参数解析  

GC,Full FC:同样是GC的类型
Allocation Failure:GC原因
PSYoungGen:使用了Parallel Scavenge并行垃圾收集器的新生代GC前后大小的变化
ParOldGen:使用了Parallel Old并行垃圾收集器的老年代GC前后大小的变化
Metaspace: 元数据区GC前后大小的变化,JDK1.8中引入了元数据区以替代永久代
xxx secs:指GC花费的时间
Times:user:指的是垃圾收集器花费的所有CPU时间,sys:花费在等待系统调用或系统事件的时间,real:GC从开始到结束的时间,包括其他进程占用时间片的实际时间。 

 打开GC日志

-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimestamps -XX:+PrintGCDatestamps

 2023-03-12T22:15:24.518+0800: 3.287: [GC (Allocation Failure) [PSYoungGen:136162K->5113K(136192K)] 141425K->17632K(222208K),0.0248249 secs] [Times:user=0.05 sys=0.00,real=0.03 secs]

2023-03-12T22:15:25.559+0800: 4.329: [GC (Metadata GC Threshold) [PSYoungGen:97578K->10068K(274944K)] 110096K->22658K(360960K),0.0094071 secs] [Times: user=0.00 sys=0.00,real=0.01 secs]

2023-03-12T22:15:25.569+0800: 4.338: [Full GC (Metadata GC Threshold) [PSYoungGen:10068K->0K(274944K)][ParoldGen:12590K->13564K(56320K)] 22658K->13564K(331264K),[Metaspace:20590K->20590K(1067008K)],0.0494875 secs] [Times: user=0.17 sys=0.02,real=0.05 secs]

说明:带上了日期和实践

如果想把GC日志存到文件的话,是下面的参数:

-Xloggc:/path/to/gc.log

日志补充说明

  • "[GC"和"[Full GC"说明了这次垃圾收集的停顿类型,如果有"Full"则说明GC发生了"Stop The World"
  • 使用Serial收集器在新生代的名字是Default New Generation,因此显示的是"[DefNew"
  • 使用ParNew收集器在新生代的名字会变成"[ParNew",意思是"Parallel New Generation"
  • 使用Parallel scavenge收集器在新生代的名字是”[PSYoungGen"
  • 老年代的收集和新生代道理一样,名字也是收集器决定的
  • 使用G1收集器的话,会显示为"garbage-first heap"
  • Allocation Failure
    表明本次引起GC的原因是因为在年轻代中没有足够的空间能够存储新的数据了。
  • [PSYoungGen:5986K->696K(8704K) ]  5986K->704K(9216K)
    中括号内:GC回收前年轻代大小,回收后大小,(年轻代总大小)
    括号外:GC回收前年轻代和老年代大小,回收后大小,(年轻代和老年代总大小)
  • user代表用户态回收耗时,sys内核态回收耗时,rea实际耗时。由于多核的原因,时间总和可能会超过real时间

Heap(堆)
PSYoungGen(Parallel Scavenge收集器新生代)total 9216K,used 6234K [0x00000000ff600000,0x0000000100000000,0x0000000100000000)
eden space(堆中的Eden区默认占比是8)8192K,768 used [0x00000000ff600000,0x00000000ffc16b08,0x00000000ffe00000)
from space(堆中的Survivor,这里是From Survivor区默认占比是1)1024K, 0% used [0x00000000fff00000,0x00000000fff00000,0x0000000100000000)
to space(堆中的Survivor,这里是to Survivor区默认占比是1,需要先了解一下堆的分配策略)1024K, 0% used [0x00000000ffe00000,0x00000000ffe00000,0x00000000fff00000)
                                                                         
ParOldGen(老年代总大小和使用大小)total 10240K, used 7001K [0x00000000fec00000,0x00000000ff600000,0x00000000ff600000)
object space(显示个使用百分比)10240K,688 used [0x00000000fec00000,0x00000000ff2d6630,0x00000000ff600000)

PSPermGen(永久代总大小和使用大小)total 21504K, used 4949K [0x00000000f9a00000,0x00000000faf00000,0x00000000fec00000)
object space(显示个使用百分比,自己能算出来)21504K, 238 used [0x00000000f9a00000,0x00000000f9ed55e0,0x00000000faf00000)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_285812.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件企业利用ChatGPT的正确姿势

先来看一下现在市场环境 ChatGPT作为现象级产品横空出世之后,极大地带动了大语言模型产业和生成式AI(AIGC)产业的蓬勃发展。海外市场上,OpenAI、微软、谷歌、Meta等巨头动作频频。中国市场更是风起云涌,百度、阿里、华…

Golang每日一练(leetDay0034) 二叉树专题(3)

目录 100. 相同的树 Same Tree 🌟 101. 对称二叉树 Symmetric Tree 🌟 102. 二叉树的层序遍历 Binary Tree Level-order Traversal 🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一…

Talk预告 | 清华大学交叉信息研究院助理教授赵行:基于视觉感知的自动驾驶运动预测

本期为TechBeat人工智能社区第481期线上Talk! 北京时间3月15日(周三)20:00,清华大学交叉信息研究院助理教授——赵行的Talk将准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “基于视觉感知的自动驾驶运动预测”,届时将…

AIGC大模型时代下,该如何应用高性能计算PC集群打造游戏开发新模式?

ACT | SIM | ETC | FTG | RAC AVG | RPG | FPS | MUG | PUZ ACT、SIM、ETC、FTG、RAC、RTS、STG、AVG、RPG、FPS、MUG、PUZ、SLG、SPG等游戏类型,需要高性能的计算机来支持运行。为了满足这些游戏的需求,国内服务器厂商不断推出新的产品,采用…

AD20的PCB布线规则设定

目录 1、最小安全间距 2、线宽规则 3、过孔 4、盖油工艺设计 5、内电层焊盘模式设置 6、反焊盘间距设计 7、焊盘与覆铜连接类型 AD20的规则库设定是PCB布线的首要工作,在布线初期就要设置好,布线的过程中还需要动态的变更,因此本篇总结了PCB的…

基于逻辑回归构建肿瘤预测模型

使用逻辑回归构建肿瘤预测模型 描述 乳腺癌数据集包括569个样本,每个样本有30个特征值(病灶特征数据),每个样本都属于恶性(0)或良性(1)两个类别之一,要求使用逻辑回归&…

九龙证券|服务器龙头获资金连续抢筹,尾盘主力抢筹前期大热门股

今天,核算机职业取得主力大手笔抢筹。 今天主力资金净流出53.89亿元,其间创业板净流出3.19亿元,沪深300成份股净流出7.61亿元。 申万一级职业中,今天有19个职业上涨,传媒职业接连两日均涨近5%,居首位&…

解密HTTP协议:探索其组成部分与工作原理

前言 欢迎来到今天的每日一题,每日一提。昨天有聊到,HTTP 和 HTTPS 之间有什么区别?面试官基本秉承着刨根问题的原则,肯定是不会轻易放过我们的,那么自然是要继续拷问了。所以我们今天就聊聊什么是 HTTP,它…

ERTEC200P-2 PROFINET设备完全开发手册(5-2)

5.2 TIA 数据记录操作 在PLC的程序中,可以通过指令RDREC和WRREC读写数据记录,在参考代码里可以看到读写操作都实现了index 2的记录数据,并且初始化为: #define DEMO_RECORD "ABCDEFGH" 首先定义要写入和读出的数据…

让技术造福残障人士,让开发助力无障碍

前言 随着互联网技术的快速发展,越来越多的领先技术运用到公益领域中来。运用科技来造福残障人士,比如前几年比较智能化的自动行走轮椅,盲人阅读器,以及聋哑人助听器等,都是通过科技来帮助残障人士方便生活的例子。作为…

pandas之DataFrame基础

pandas之DataFrame基础1. DataFrame定义2. DataFrame的创建形式3. DataFrame的属性4. DataFrame的运算5. pandas访问相关操作5.1 使用 loc[]显示访问5.2 iloc[] 隐式访问5.3 总结6. 单层索引和多层级索引6.1 索引种类与使用6.2 索引相关设置6.3 索引构造6.4 索引访问6.5 索引变…

【排序算法 上】带你手撕常见排序 (插入,希尔,选择,堆排序) (动图详解)

欢迎来到 Claffic 的博客 💞💞💞 “东风随春归,发我枝上花。” 前言: 排序是日常生活中极其常见的一种算法,它的功能很简单,就是将数字按照升序/降序排列,最终形成一组有序的数字&a…

NumPy 秘籍中文第二版:五、音频和图像处理

原文:NumPy Cookbook - Second Edition 协议:CC BY-NC-SA 4.0 译者:飞龙 在本章中,我们将介绍 NumPy 和 SciPy 的基本图像和音频(WAV 文件)处理。 在以下秘籍中,我们将使用 NumPy 对声音和图像进…

Redis锁的租约问题

目录Redis的租约问题Redis租约问题的想法Redis租约问题的解决方案Redis的租约问题 首先我们先来说一说什么是Redis的租约问题。   在我们实现Redis分布式锁的时候&#xff0c;我们会出现Redis锁的时间<业务执行执行时间&#xff0c;这其实就是一个典型的租约问题&#xf…

ChatGPT背后的AI背景、技术门道和商业应用(万字长文,建议收藏)

作者&#xff1a;京东科技 李俊兵 各位看官好&#xff0c;我是球神&#xff08;江湖代号&#xff09;。 自去年11月30日ChatGPT问世以来&#xff0c;迅速爆火出圈。 起初我依然以为这是和当年Transformer, Bert一样的“热点”模型&#xff0c;但是当一篇篇文章/报告不断推送…

LAMP架构的配置

一.LAMP概述 1、LAMP的概念 LAMP架构是目前成熟的企业网站应用模式之一&#xff0c;指的是协同工作的一整套系统和相关软件&#xff0c;能够提供动态web站点服务及其应用开发环境 LAMP是一个缩写词&#xff0c;具体包括Linux操作系统、Apache网站服务器、MySQL数据库服务器、…

【Unity入门】11.脚本控制物体旋转

【Unity入门】脚本控制物体旋转 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity入门系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;控制物体自转 &#xff08;1&#xff09;创建RotateLogic脚本 上一篇文章我们学习了如何在脚本中获取物体对象…

Oracle VM VirtualBox安装开放麒麟桌面版本操作

1.环境 Oracle VM VirtualBox版本6.1.18 开放麒麟桌面版本openkylin 0.0.5 https://mirror.lzu.edu.cn/openkylin-cdimage/yangtze/openkylin-0.9.5-x86_64.iso 1.创建新虚拟电脑 ql 并将ios导入 然后点击启动 注意&#xff1a; vm box如果鼠标设置不当的话 基本上不可能完成…

word脚标【格式:第X页(共X页)】

不得不吐槽一下这个论文&#xff0c;真的我好头疼啊。我又菜又不想改。但是还是得爬起来改 &#xff08;是谁大半夜不能睡觉加班加点改格式啊&#xff09; 如何插入页码。 格式、要求如下: 操作步骤&#xff1a; ①双击页脚&#xff0c;填好格式&#xff0c;宋体小四和居中都…

联想集团ESG与社会价值论坛召开,首次发布《联想集团2022社会价值报告》

对企业而言&#xff0c;ESG不再是选择题&#xff0c;而是必答题。 联想集团是ESG的先行者、领军者。 2023年4月11日&#xff0c;“联想集团ESG与社会价值论坛暨《联想集团2022社会价值报告》发布会”在京召开&#xff0c;会议由中国社会责任百人论坛、联想集团联合主办&#xf…