【c++】STL--vector

news/2024/4/28 13:21:49/文章来源:https://blog.csdn.net/includeevey/article/details/128429261

前言        

        想必大家已经对string有所了解了,string是专门用于字符串的。今天讲到的vector则是表示可变大小数组的序列容器。就像数组一样,vectoer也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。在之前我们学习c语言时使用数组,还需要通过malloc开辟,但现在使用vector,就不需要使用者再去开辟空间,它将自动处理。 

本质来讲, vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。 总的来说就是:为了避免不必要的时间花费或者空间浪费,最开始开辟空间就尽量为后面开辟空间着想,在不同情况采用不同的策略。

前面也学过string,那么对于vector更是得心应手,当学习vector使用的时候你会发现基本上接口都是与string一样的。

一、stl_vector

我们先从原码进行观察它的主体结构,然后我们在实现的时候就可以按照源码的结构进行模拟。


在 stl_vector.h中,我们剥离出一部分代码,主体结构如下:

class vector {
public:

  ........................

  .................................

protected:
  ........
  iterator start;
  iterator finish;
  iterator end_of_storage;

........................................................

}

在源码中,我们发现这里是用的迭代器(iteartor),我们也不知道 start;finish; end_of_storage;是代表的什么意思,下面我们带入一副源码剖析图再进行理解:

通过源码剖析图,在处理数组的时候,start指向数组开始的位置,finish指向数组中内容最后的位置,end_of_storage指向的是数组开辟空间最大的位置。

二、vector的定义

我们在学vector时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,然后通过查找文档去学习重点掌握的接口


2.1无参构造

--vector()(重点)

Example

vector<int> v;    //无参构造

模拟实现

vector():_start(nullptr);,_finish(nullptr);,_endofstorage(nullptr){};

2.2构造并初始化n个val

--vector(size_type n, const value_type& val = value_type())

Example

int main()
{
    vector<int> v1(4, 3);

    for (auto e : v1)
    {
        cout << e << " ";
        ++e;
    }

    return 0;
}

结果:

               3 3 3 3

模拟实现

		vector(size_type n, const T& val = T()):_start(nullptr), _finish(nullptr), _endofstorage(nullptr){reserve(n);    for (size_t i = 0; i <= n; i++){push_back(val);}}

2.3使用迭代器进行初始化构造

--vector (InputIterator first, InputIterator last);

 Example

    vector<int> v(4, 10);

    vector<int> v1(v.begin(), v.end());
    for (auto e : v1)
    {
        cout << e << " ";
        ++e;
    }

结果:

        10 10 10 10 

模拟实现

		template < class  InputIterator>vector(InputIterator first, InputIterator last):_start(nullptr), _finish(nullptr), _endofstorage(nullptr){while (frist != last){push_back(*frist);++frist;}}

2.4拷贝构造

--vector (const vector& x); (重点)

 Example

 vector<int> v(4,3);

    vector<int> v1(v);

    for (auto e : v1)
    {
        cout << e << " ";
        ++e;
    }

结果:

        3 3 3 3 

 模拟实现

		vector(const vector<T>& v):_start(nullptr), _finish(nullptr), _endofstorage(nullptr){vector<T> tmp(v.begin(), v.end());swap(tmp);}

三、vector iterator 的使用

我们先重温一下迭代器(iterator)是一种可以遍历容器元素的数据类型。迭代器是一个变量,相当于容器和操纵容器的算法之间的中介。C++更趋向于使用迭代器而不是数组下标操作,因为标准库为每一种标准容器(如vector、map和list等)定义了一种迭代器类型,而只有少数容器(如vector)支持数组下标操作访问容器元素。可以通过迭代器指向你想访问容器的元素地址,通过*x打印出元素值。这和我们所熟知的指针极其类似。

C语言有指针,指针用起来十分灵活高效。
C++语言有迭代器,迭代器相对于指针而言功能更为丰富。 

vector,是数组实现的,也就是说,只要知道数组的首地址,就能访问到后面的元素。所以,我们可以通过访问vector的迭代器来遍历vector容器元素。


3.1 begin + end与rbegin + rend的理解

通过图,我们发现获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator。

而rbegin与rend,获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的

reverse_iterator

3.2 begin + end

Example

    vector<int> v;
    for (int i = 1; i <= 5; i++)
        v.push_back(i);

    cout << *v.begin() << " ";
    cout << *(v.end()-1) << " ";

结果:

        1 5 

 模拟实现

		iterator begin(){return _start;}iterator end(){return _finish;}

四、vector 空间增长问题

capacity的代码在vs和g++下分别运行会发现,在vs2013中下capacity是按1.5倍增长的,g++是按2倍增长的。 这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义 的。vs是PJ版本STL,g++是SGI版本STL。

reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。

resize在开空间的同时还会进行初始化,影响size。


4.1 vs与g++代码对比

演示代码

void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容

making foo grow:

capacity changed: 1

capacity changed: 2

capacity changed: 3

capacity changed: 4

capacity changed: 6

capacity changed: 9

capacity changed: 13

capacity changed: 19

capacity changed: 28

capacity changed: 42

capacity changed: 63

capacity changed: 94

capacity changed: 141

 g++运行结果:linux下使用的STL基本是按照2倍方式扩容

making foo grow:

capacity changed: 1

capacity changed: 2

capacity changed: 4

capacity changed: 8

capacity changed: 16

capacity changed: 32

capacity changed: 64

capacity changed: 128

因为我们知道开辟空间是需要耗时的,比如当我们需要一个较大的空间时,我们已经确定vector中要存储元素大概个数,那么就可以提前将空间设置足,这样就避免边插入边扩容导致效率低下的问题了。我们就可以用reserve接口直接先开辟到我们所需要的数理即可,操作如下:

void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

4.2 size+capacity+empty

size 获取数据个数;capacity 获取容量大小;empty 判断是否为空

Example

void test_vector()
{
    vector<int> v;
    for (int i = 1; i <= 5; i++)
        v.push_back(i);

    cout << v.size() << endl;
    cout << v.capacity() << endl;
    
    if (!v.empty())
        cout << "NO empty" << endl;

}

结果:

        5   6     NO empty

模拟实现

		iterator end(){return _finish;}size_t size() const{return _finish - _start;}bool empty() const{return  _finish == _start;}size_t capacity() const{return _endofstorage - _start;}

4.3 reserve (重点)

改变vector的capacity

 Example

void test_vector6()
{
    vector<int> v;
    v.reserve(10);

    cout << v.size() << endl;
    cout << v.capacity() << endl;

}

结果:

        0 10

模拟实现

我们在进行扩容的时候,我必须要保持原数据不变,当操作的时候记得拷贝当前数据即可。

void reserve(size_t n){if (n > capacity()){size_t oldSize = size();T* tmp = new T[n];if (_start){for (size_t i = 0; i < oldSize; i++){tmp[i] = _start[i];}delete[] _start;}_start = tem;_finish = tem + oldSize;_endofstorage = _start + n;}}

4.4 resize(重点)

改变vector的size

 Example

void test_vector5()
{
    vector<int> v;
    for (int i = 1; i <= 5; i++)
        v.push_back(i);

    cout << v.size() << endl;
    cout << v.capacity() << endl;

    v.resize(4);

    cout << v.size() << endl;
    cout << v.capacity() << endl;


    v.resize(14);

    cout << v.size() << endl;
    cout << v.capacity() << endl;
}

模拟实现

当我们实现resize的时需要考虑几个情况:

1.当n大于capacity时,需要扩容

2.当n小于capacity且大于finish时,直接填充数据即可

3.当n小于finish时,删除数据

		void resize(size_t n, T val = T()){if (n > _capacity){reserve(n);}if (n > size()){while (_finish < _start + n){*_finish = val;++_finish;}}else{_finish = _start + n;}}

五、vector 增删查改

在删除的时候需要注意的是,一般只改变finish的大小,而不去改变capacity的大小。因为我们很多时候减少了内存需要的时候又要开辟内存空间,现在计算机是有非常大内存--完全够用,减少内存空间是更加耗时的,用户是更加需要时间的,所以删的时候不改变capacity。        


5.1push_back+pop_back (重点)

尾插+尾删

 Example

void test_vector7()
{
    vector<int> v;
    v.push_back(1);
    v.push_back(2);
    v.push_back(3);
    v.push_back(4);

    cout << v.size() << endl;

    v.pop_back();
    cout << v.size() << endl;
    v.pop_back();
    cout << v.size() << endl;
}

结果:

        4 3 2

模拟实现

		void push_back(const T& x){if (_finish == _endofstorage){size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newCapacity);}*_finish = x;++_finish;}void pop_back(){assert(!empty);--_finish;}

5.2 find

查找。(注意这个是算法模块实现,不是vector的成员接口)

 Example

void test_vector8()
{
    vector<int> v;
    v.push_back(1);
    v.push_back(2);
    v.push_back(3);
    v.push_back(4);


    cout<<*find(v.begin(), v.end(), 3)<<" ";
    cout << *find(v.begin(), v.end(), 4) << " ";
}

结果:

        3 4

5.3 swap 

交换两个vector的数据空间

 Example

void test_swap()
{
    vector<int> v(4,3);
    vector<int> v1(5, 4);

    v.swap(v1);
    cout << v[0] << " ";
}

结果:

        4

模拟实现

		void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endofstorage, v._endofstorage);}

 5.4 insert 

在position之前插入val

 Example

void test_insert()
{
    vector<int> v(4, 3);
    v.insert(v.begin(), 6);
    v.insert(v.end(), 6);

    for (auto e : v)
    {
        cout << e << " ";
        ++e;
    }
}

结果:

        6 3 3 3 3 6

模拟实现

在模拟实现insert的时候会发生迭代器失效,迭代器失效实则就是扩容引起的野指针问题,实现insert有种特殊情况。当我们插入一个数据的时候,该数组是没有空间需要开辟空间,当开辟空间后pos如果不更新的话,还是指向的是原来的地址,那么当开辟后这个地址是会被操作系统回收,pos就会发生野指针的问题。

 

// 迭代器失效 : 扩容引起,野指针问题iterator insert(iterator pos, const T& val){assert(pos >= _start);assert(pos <= _finish);if (_finish == _endofstorage){size_t len = pos - _start;size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newCapacity);// 扩容会导致pos迭代器失效,需要更新处理一下pos = _start + len;}// 挪动数据iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;++end;}*pos = val;++_finish;return pos;}

5.5 erase

删除position位置的数据

 Example

void test_erase()
{
    vector<int> v;
    v.push_back(1);
    v.push_back(2);
    v.push_back(3);
    v.push_back(4);
    v.push_back(5);

    v.erase(v.begin());
    for (auto e : v)
    {
        cout << e << " ";
        ++e;
    }
    cout << endl;

    v.erase(v.begin()+1);
    for (auto e : v)
    {
        cout << e << " ";
        ++e;
    }

}

结果:

        2 3 4 5
        2 4 5

模拟实现

		iterator erase(iterator pos){assert(pos >= _start);assert(pos < _finish);iterator begin = pos + 1;while (begin < _finish){*(begin - 1) = *begin;++begin;}--_finish;return pos;}

5.6 operator[]

像数组一样访问

 Example

void test_operator()
{
    vector<int> v;
    v.push_back(1);
    v.push_back(2);
    v.push_back(3);
    v.push_back(4);
    v.push_back(5);

    for (size_t i = 0; i < v.size(); i++)
    {
        cout << v[i] << " ";
    }
}

结果:

        1 2 3 4 5

 模拟实现

		T& operator[](size_t pos){assert(pos < size());return _start[pos];}

六、vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。


6.1会引起其底层空间改变的操作,都有可能是迭代器失效

如:resize、reserve、insert、assign、push_back等。

测试代码

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4, 5, 6 };auto it = v.begin();v.assign(100, 8);while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容

v.resize(100, 8);

reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变

 v.reserve(100);

插入元素期间,可能会引起扩容,而导致原空间被释放

v.insert(v.begin(), 0);

v.push_back(8);

给vector重新赋值,可能会引起底层容量改变

运行结果:

 

出错原因:

        以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。

解决方式:

        在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。

修改后的代码

int main()
{vector<int> v{ 1, 2, 3, 4, 5, 6 };v.assign(100, 8);auto it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

 运行结果:

6.2指定位置元素的删除操作--erase  

下面代码用pos查找所找3位置的iterator,然后删除pos位置的数据,再去访问。这一例子就好比刻舟求剑一样。

测试代码

#include <iostream>
using namespace std;
#include <vector>int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是 】没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效 了。

以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
}int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}

代码二对,当用erase删除不是2的偶数it时,到最后还会出现野指针访问

 

当我们更新pos,将pos指向到删除的位置就不会错了,那么代码二就多做了这一步。

6.3在Linux下迭代器失效

注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

1.扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了

int main()
{vector<int> v{ 1, 2, 3, 4, 5 };for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

程序输出:

1 2 3 4 5

扩容之前,vector的容量为: 5

扩容之后,vector的容量为: 100 0 2 3 4 5 409 1 2 3 4 5

2.erase删除任意位置代码后,linux下迭代器并没有失效

因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的

int main()
{vector<int> v{ 1, 2, 3, 4, 5 };vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

程序可以正常运行,并打印:

4 4 5

3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end 

此时迭代器是无效的,++it导致程序崩溃

int main()
{vector<int> v{ 1, 2, 3, 4, 5 };// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}for (auto e : v)cout << e << " ";cout << endl;return 0;
}

========================================================

// 使用第一组数据时,程序可以运行

[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11

[sly@VM-0-3-centos 20220114]$ ./a.out

1 3 5

=========================================================

// 使用第二组数据时,程序最终会崩溃

[sly@VM-0-3-centos 20220114]$ vim testVector.cpp [sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11

[sly@VM-0-3-centos 20220114]$ ./a.out Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不 对,如果it不在begin和end范围内,肯定会崩溃的。

4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

#include <string>void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it); ++it;}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。


                                                                                完结!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_240142.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot系列之自动装配原理详解

文章目录前言一、SpringBoot自动配置-Condition-11、观察spring自动创建bean过程2、创建自定义bean对象3、根据条件创建自定义bean二、 SpringBoot自动配置-Condition-2三、SpringBoot自动配置-切换内置web服务器1、查看继承关系图2、shiftdelete 排除Tomcat四、SpringBoot自动…

12.20工作学习记录 力扣 罗马文转数字

每日一题:罗马文转数字 定义两个指针 不断后移 每一次让前一个指针的值累加为sum 最后返回sum 力扣https://leetcode.cn/problems/roman-to-integer/ 最长公共前缀 主要是subString方法 力扣https://leetcode.cn/problems/longest-common-prefix/solutions/现在分词与形容…

圣诞的荒诞小故事并记录互联网协议-五层模型

今天敲代码敲着敲着灵光乍现&#xff0c;突然一个荒诞的故事&#x1f4a1;映入脑海。 1.未来和过去&#xff1a; 人高度发达&#xff08;以下称之为渡&#xff09; 渡可以打开时空穿越过去&#xff08;以下称之为旧迹&#xff09;&#xff0c;并且可以进随心所欲的来去自如&a…

基于yolov5s实践国际象棋目标检测模型开发

在我前面的一篇文章中讲解实现了基于改进的yolov5s-spd模型实现了五子棋目标对象检测模型系统的设计开发&#xff0c;这里紧接前文&#xff0c;突发奇想&#xff0c;是否可以借鉴同样的思路实现象棋的检测模型开发呢&#xff1f;理论上面肯定是可以的&#xff0c;但是实际效果如…

详细介绍关于自定义类型:结构体、枚举、联合【c语言】

文章目录结构体结构体的声名特殊的声明结构成员的类型结构的自引用结构体变量的定义和初始化结构体内存对齐修改默认对齐数结构体变量访问成员结构体传参结构体实现位段&#xff08;位段的填充&可移植性&#xff09;位段的内存分配位段的跨平台问题枚举枚举类型的定义枚举的…

微信小程序入门

目录 一&#xff0c;简介 二&#xff0c;小程序开发环境搭建 1.申请账号 2.安装开发工具 3.小程序工具使用 三&#xff0c;目录结构以及json配置 1.目录结果 2.json配置 3.JSON 语法 4.WXML 5.wxss 6.JS 逻辑交互 四&#xff0c;小程序宿主环境 1.程序与页面 2.组件…

String 字符串

String 基本介绍 String 应该是 Java 中最常用的一个对象&#xff0c;他不是八种基本数据类型的其中之一&#xff0c;但是随便翻了一下项目代码&#xff0c;用 String 定义的变量超过百分之八十。 public final class Stringimplements java.io.Serializable, Comparable<…

自己整理的vue实现生成分享海报(含二维码),看着网上的没实现

大家好&#xff0c;我是雄雄。 前言 相信大家在许多的场景下&#xff0c;看到过这样的案例。 当我们在某购物app上看好一件商品&#xff0c;想分享给别人时&#xff0c;app会给我们生成一张海报&#xff0c;我们将其保存在手机里面转发给其他人达到分享。当我们逛CSDN的时候&…

12.25日周报

周报 代码行数&#xff1a; 周一 704 周二 481 周三 571 周四 589 周五 595 周六 520 周日 537 遇到的问题&#xff1a; 没用过的方法AtomicInteger Insert Proto currentTimeMillis RequestParam BufferedReader UriComponents RestTemplate OSS 不清楚在…

Windows和Mac系统实现本地部署WebPageTest工具

在项目开发或者测试的过程中&#xff0c;由于没有上线&#xff0c;我们在公网上无法访问我们的网站&#xff0c;但同时我们又需要查看浏览器性能&#xff0c;这样我们就需要在本地部署WebPageTest工具以协助进行性能测试 具体实现步骤&#xff1a; Windows系统&#xff1a; …

【高级篇04】MySQL逻辑架构

文章目录第四章&#xff1a;逻辑架构逻辑架构SQL执行流程数据库缓冲池第四章&#xff1a;逻辑架构 逻辑架构 第一层&#xff1a;连接层。客户端访问MySQL服务器&#xff0c;首先建立TCP连接&#xff0c;经过三次握手建立连接成功后&#xff0c;MySQL服务器对TCP传输过来的账号…

PHP开发工具PhpStorm v2022.3——完全支持PHP 8.2

PhpStorm是一个轻量级且便捷的PHP IDE&#xff0c;其旨在提高用户效率&#xff0c;可深刻理解用户的编码&#xff0c;提供智能代码补全&#xff0c;快速导航以及即时错误检查。可随时帮助用户对其编码进行调整&#xff0c;运行单元测试或者提供可视化debug功能。 PhpStorm v20…

excel数据处理技巧:组合函数统计产品批号

这是一个看似普通的编号问题&#xff0c;可竟然动用了TEXT和SUMPRODUCT两个重量级的函数共同出手才得以解决。以往遇到的编号问题&#xff0c;大多数都是COUNTIF的拿手好戏&#xff0c;但是今天这个问题COUNTIF完全插不上手&#xff0c;来看看模拟的数据吧。 如图所示&#xff…

循环神经网络-基础篇Basic-RNN

循环神经网络-基础篇Basic-RNN 我们把全连接网络也叫做稠密网络DNN&#xff0c;其中X1到X8是不同样本的特征 而本文介绍的循环神经网络RNN主要处理的是具有序列关系的输入数据&#xff0c;即前面的输入和后面的输入是有关系的。例如天气&#xff0c;股市&#xff0c;金融数据和…

ES6 模块化、webpack、@ 代表src目录的设置

文章目录webpackSource Map 代表src目录的设置ES6 模块化要求默认 导出默认导入按需 导出、导入混合使用直接导入 并执行模块中的代码webpack 默认 约定&#xff1a; 自定义 打包的 入口与出口 const path require(path) // 导入node.js中 专门操作路径的模块 module.expor…

哺乳时宝宝一边吃奶,另一边却自动流出来,这是怎么回事?

别人眼中的母乳喂养只是简单地把宝宝抱在怀里&#xff0c;让宝宝吃饱&#xff0c;超级简单。事实上&#xff0c;有很多母乳喂养。“麻烦事”比如母乳不足、堵奶、乳腺炎等&#xff0c;甚至更多“简单”漏奶会让宝宝头疼。有些妈妈很幸运&#xff0c;不知道什么是漏奶&#xff0…

基于Java+SpringBoot+vue等疫情期间网课管理系统详细设计和实现

博主介绍&#xff1a;✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取联系&#x1f345;精彩专栏推荐订阅收藏&#x1f447;&…

Git Bash Here和RStudio软件的问题解决

Git Bash Here和RStudio软件的问题解决 文章目录Git Bash Here和RStudio软件的问题解决0、 写在前面1、Git软件在任务栏图标空白2、RStudio软件2.1 警告信息InormalizePath(path.expand(path),winslash,mustWork)2.2 incomplete final line found by readTableHeader on报错3、…

为啥devc++程序运行正确返回不为0?而返回了一个特别大的数,详解。

例如运行以下程序: #include #include typedef char ElemType; typedef struct BiTNode{ char data; struct BiTNode *lchild; struct BiTNode *rchild; int DescNum;}BiTNode ,*BiTree; void CreateBiTree(BiTree *T) { char ch; scanf("%c",&ch); if(ch ){…

力扣(LeetCode)207. 课程表(C++)

拓扑排序 根据示例看出&#xff0c;课程表是否存在环&#xff0c;是问题的关键。这题的环&#xff0c;和数组、链表的环不一样&#xff0c;不好判&#xff0c;要转化成图判拓扑序列。 考虑向右和向左的方向&#xff0c;拓扑序列的所有边可以指向同一方向。 无环图进行重排序…