(黑马出品_05)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

news/2024/4/15 5:38:35/文章来源:https://blog.csdn.net/weixin_46225503/article/details/136531021

(黑马出品_05)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    • = = = = = = = = = = = = = = = 微服务技术分布式搜索 = = = = = = = = = = = = = = =
    • 今日目标
    • 1.初识elasticsearch
      • 1.1.了解ES
        • 1.1.1.elasticsearch的作用
        • 1.1.2.ELK技术栈
        • 1.1.3.elasticsearch和lucene
        • 1.1.4.为什么不是其他搜索技术?
        • 1.1.5.总结
      • 1.2.倒排索引
        • 1.2.1.正向索引
        • 1.2.2.倒排索引
        • 1.2.3.正向和倒排
      • 1.3.es的一些概念
        • 1.3.1.文档和字段
        • 1.3.2.索引和映射
        • 1.3.3.mysql与elasticsearch
      • 1.4.安装es、kibana
        • 1.4.1.安装elasticsearch
          • 1.部署单点es
            • 1.1.创建网络
            • 1.2.加载镜像
            • 1.3.运行
          • 2.部署kibana
            • 2.1.部署
            • 2.2.DevTools
          • 3.安装IK分词器
            • 3.1.在线安装ik插件(较慢)
            • 3.2.离线安装ik插件(推荐)
            • 1)查看数据卷目录
            • 2)解压缩分词器安装包
            • 3)上传到es容器的插件数据卷中
            • 4)重启容器
            • 5)测试:
            • 3.3 扩展词词典
            • 3.4 停用词词典
          • 4.部署es集群
        • 1.4.2.分词器
        • 1.4.3.总结
    • 2.索引库操作
      • 2.1.mapping映射属性
      • 2.2.索引库的CRUD
        • 2.2.1.创建索引库和映射
          • 基本语法:
          • 示例:
        • 2.2.2.查询索引库
        • 2.2.3.修改索引库
        • 2.2.4.删除索引库
        • 2.2.5.总结
    • 3.文档操作
      • 3.1.新增文档
      • 3.2.查询文档
      • 3.3.删除文档
      • 3.4.修改文档
        • 3.4.1.全量修改
        • 3.4.2.增量修改
      • 3.5.总结
    • 4.RestAPI
      • 4.0.导入Demo工程
        • 4.0.1.导入数据
        • 4.0.2.导入项目
        • 4.0.3.mapping映射分析
        • 4.0.4.初始化RestClient
      • 4.1.创建索引库
        • 4.1.1.代码解读
        • 4.1.2.完整示例
      • 4.2.删除索引库
      • 4.3.判断索引库是否存在
      • 4.4.总结
    • 5.RestClient操作文档
      • 5.1.新增文档
        • 5.1.1.索引库实体类
        • 5.1.2.语法说明
        • 5.1.3.完整代码
      • 5.2.查询文档
        • 5.2.1.语法说明
        • 5.2.2.完整代码
      • 5.3.删除文档
      • 5.4.修改文档
        • 5.4.1.语法说明
        • 5.4.2.完整代码
      • 5.5.批量导入文档
        • 5.5.1.语法说明
        • 5.5.2.完整代码
      • 5.6.小结

在这里插入图片描述
在这里插入图片描述
此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客

是这个视频

= = = = = = = = = = = = = = = 微服务技术分布式搜索 = = = = = = = = = = = = = = =

今日目标

1.初识elasticsearch

1.1.了解ES

在这里插入图片描述

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:
• 在GitHub搜索代码
在这里插入图片描述
• 在电商网站搜索商品
在这里插入图片描述
• 在百度搜索答案
在这里插入图片描述
• 在打车软件搜索附近的车
在这里插入图片描述

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
在这里插入图片描述
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
在这里插入图片描述

1.1.3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。
在这里插入图片描述
elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。
    在这里插入图片描述
1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:
在这里插入图片描述

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

在这里插入图片描述

1.1.5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beatsLogstashkibanaelasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
在这里插入图片描述
如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:
在这里插入图片描述
倒排索引的搜索流程如下(以搜索"华为手机"为例):

  1. 用户输入条件"华为手机"进行搜索。

  2. 对用户输入内容分词,得到词条:华为手机

  3. 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

  4. 拿着文档id到正向索引中查找具体文档。

如图:
在这里插入图片描述

虽然要先查询倒排索引,再查询文档id,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
在这里插入图片描述
而Json文档中往往包含很多的
字段(Field)
,类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性
    在这里插入图片描述
    在这里插入图片描述

1.4.安装es、kibana

1.4.1.安装elasticsearch

参考课前资料:
在这里插入图片描述

1.部署单点es
1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net
1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

课前资料提供了镜像的tar包:
在这里插入图片描述
创建文件夹

mkdir /tmp/elasticsearch

把资料中的es.tar移动到文件夹中
在这里插入图片描述
大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行
  • 运行docker命令,部署单点es:

  • 9200是暴露的http协议端口,提供用户访问

  • 9300是es容器互联的端口

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:
ip地址+端口

http://192.168.150.101:9200 

即可看到elasticsearch的响应结果:
在这里插入图片描述

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1

第一次的话,会拉取kibana:7.12.1,耐心等待。

  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:
在这里插入图片描述

此时,在浏览器输入地址访问:

http://192.168.150.101:5601

即可看到结果
在这里插入图片描述

2.2.DevTools

kibana中提供了一个DevTools界面:
在这里插入图片描述
打开后如下:点击发送,信息就发到了ES中
在这里插入图片描述

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
我们做个简单demo,点击发送后,收到
在这里插入图片描述

3.安装IK分词器

分词器
es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。
我们在kibana的DevTools中测试:

# 测试分词器
POST /_analyze
{"analyzer": "standard","text": "黑马程序员学习java太棒了"
}

点击分词后,发现英文的java拆分的很好,但是中文竟然是按字拆分的
在这里插入图片描述
我们按中文试一下,发现中文拆分也不好
在这里插入图片描述
我们按标准模式试一下,发现中文拆分也不好
在这里插入图片描述
那么中文分词推荐ik分词器

3.1.在线安装ik插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch
3.2.离线安装ik插件(推荐)
1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2022-05-06T10:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
在这里插入图片描述

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

在这里插入图片描述

4)重启容器
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

发现成功加载了ik
在这里插入图片描述

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分 粒度粗,分的词语少,占用空间少
    在这里插入图片描述

  • ik_max_word:最细切分 粒度细致,分的词语多,占用空间多
    在这里插入图片描述

GET /_analyze
{"analyzer": "ik_max_word","text": "黑马程序员学习java太棒了"
}

结果:

{"tokens" : [{"token" : "黑马","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "程序员","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 1},{"token" : "程序","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 2},{"token" : "员","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 3},{"token" : "学习","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 4},{"token" : "java","start_offset" : 7,"end_offset" : 11,"type" : "ENGLISH","position" : 5},{"token" : "太棒了","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 6},{"token" : "太棒","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 7},{"token" : "了","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 8}]
}
3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

我们先试一下新词的加入,看看如何拆分

# 测试新颖的词语
POST /_analyze
{"text": "看了视频记得一键三连,拒绝白嫖,点赞投币机加收藏,谢谢你的喜欢,奥里给","analyzer": "ik_max_word"
}

这种分词明显是不符合的
在这里插入图片描述

1)打开IK分词器config目录:
在这里插入图片描述
打开文件:
在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>

新增了ext.dic用于添加新词语
新增了stopword.dic用于禁用词语
在这里插入图片描述

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
在这里插入图片描述
添加内容如下:
在这里插入图片描述

传智播客
奥力给

4)重启elasticsearch

docker restart es# 查看 日志
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{"analyzer": "ik_max_word","text": "传智播客Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词
在这里插入图片描述

电信诈骗

4)重启elasticsearch

# 重启服务
docker restart es
docker restart kibana# 查看 日志
docker logs -f es

日志中已经成功加载stopword.dic配置文件

5)测试效果:

# 测试新颖的词语
POST /_analyze
{"text": "看了视频记得一键三连,拒绝白嫖,预防电信诈骗,点赞投币加收藏,谢谢你的喜欢,奥里给","analyzer": "ik_max_word"
}

在这里插入图片描述

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:es01:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data02:/usr/share/elasticsearch/datanetworks:- elastices03:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticvolumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

Run docker-compose to bring up the cluster:

docker-compose up
1.4.2.分词器

见上
参考课前资料:
在这里插入图片描述

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本,可以拆分)、keyword(精确值,例如:品牌、国家、ip地址,不能拆分)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true,不参与搜索就设置false
  • analyzer:使用哪种分词器
    • ik_smart:智能切分,粗粒度
    • ik_max_word:最细切分,细粒度
  • properties:该字段的子字段,代表某个字段的子属性

例如下面的json文档:

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy@itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1.创建索引库和映射
基本语法:
  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}
示例:
# 创建索引库
PUT /heima
{"mappings": {"properties": {"info": {"type": "text","analyzer": "ik_smart"},"email": {"type": "keyword","index": false},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}

可以格式化一下
在这里插入图片描述
运行后查看
在这里插入图片描述

2.2.2.查询索引库

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

示例
在这里插入图片描述

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例

# 修改索引库(添加新属性)
PUT /heima/_mapping
{"properties":{"age":{"type": "integer"}}
}

在这里插入图片描述

2.2.4.删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

在这里插入图片描述

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

在这里插入图片描述

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}

示例:

POST /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

响应:
在这里插入图片描述

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:
在这里插入图片描述

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:
语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /heima/_doc/1

结果:
在这里插入图片描述
删除后再查询
在这里插入图片描述

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段
3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

示例:

# 修改文档
PUT /heima/_doc/1
{"info": "黑马程序员讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

结果如下:
在这里插入图片描述

3.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。
语法:

POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}

示例:

# 修改文档 局部修改,只修改指定的字段
POST /heima/_update/1
{"doc": {"email" : "keyi@itcast.cn"}
}

修改后
在这里插入图片描述

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

4.RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:RestAPI官网

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client
    在这里插入图片描述
    我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

案例

利用JavaRestClient实现创建、删除索引库,判断索引库是否存在

根据课前资料提供的酒店数据创建索引库,索引库名为hotel, mapping属性根据数据库结构定义。

基本步骤如下:

  1. 导入课前资料Demo
  2. 分析数据结构,定义mapping属性
  3. 初始化JavaRestClient
  4. 利用JavaRestClient创建索引库
  5. 利用JavaRestClient删 除索引库
  6. 利用JavaRestClient判 断索引库是否存在
4.0.1.导入数据

首先导入课前资料提供的数据库数据:
在这里插入图片描述

数据结构如下:

CREATE TABLE `tb_hotel` (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',`address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',`price` int(10) NOT NULL COMMENT '酒店价格;例:329',`score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',`brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',`city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',`star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',`business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',`latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',`longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',`pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
4.0.2.导入项目

然后导入课前资料提供的项目:
在这里插入图片描述

项目结构如图:
在这里插入图片描述

4.0.3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

在这里插入图片描述

来看下酒店数据的索引库结构:

# 创建酒店索引
PUT /hotel
{"mappings": {"properties": {"id": {"type": "keyword"},"name": {"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address": {"type": "keyword","index": false},"price": {"type": "integer"},"score": {"type": "integer"},"brand": {"type": "keyword","copy_to": "all"},"city": {"type": "keyword"},"starName": {"type": "keyword"},"business": {"type": "keyword","copy_to": "all"},"location": {"type": "geo_point"},"pic": {"type": "keyword","index": false},"all": {"type": "text","index": true,"analyzer": "ik_max_word"}}}
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:这里酒店的坐标类型我们用geo_point
在这里插入图片描述
copy_to说明:同时根据多个字段搜索
在这里插入图片描述

4.0.4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

导入后我们发现,大部分版本更改为7.12.1,但是仍然有少数版本是7.6.2
在这里插入图片描述

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

配置完再看一下,都变成7.12.1
在这里插入图片描述
3)初始化RestHighLevelClient:
初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
在这里插入图片描述
代码如下

package cn.itcast.hotel;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;import java.io.IOException;public class HotelIndexTest {private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}@Testpublic void test() {System.out.println("restHighLevelClient初始化成功" + restHighLevelClient);}
}

运行后结果如下:
在这里插入图片描述

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:
在这里插入图片描述

代码分为三步:

  • 创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
4.1.2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +"  \"mappings\": {\n" +"    \"properties\": {\n" +"      \"id\": {\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"name\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"address\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"price\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"score\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"brand\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"city\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"starName\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"business\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"location\":{\n" +"        \"type\": \"geo_point\"\n" +"      },\n" +"      \"pic\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"all\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\"\n" +"      }\n" +"    }\n" +"  }\n" +"}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);
}

运行测试类,查看dev_tools,表示创建成功
在这里插入图片描述

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}

执行后我们去dev_tools中查询,发现删除成功
在这里插入图片描述

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

输出结果

索引库不存在!

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5.RestClient操作文档

案例:利用JavaRestClient实现文档的CRUD
去数据库查询酒店数据,导入到hotel索引库,实现酒店数据的CRUD。
基本步骤如下:

  1. 初始化JavaRestClient
  2. 利用JavaRestClient新增酒店数据
  3. 利用JavaRestClient根据id查询酒店数据
  4. 利用JavaRestClient删 除酒店数据
  5. 利用JavaRestClient修 改酒店数据

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

在这里插入图片描述

要注意@SpringBootTest注释不要漏了
在这里插入图片描述
HotelDocumentTest.java代码如下

package cn.itcast.hotel;import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;import java.io.IOException;
import java.util.List;@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {@TableId(type = IdType.INPUT)private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String longitude;private String latitude;private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location
    因此,我们需要定义一个新的类型,与索引库结构吻合:
package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();}
}
5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{"name": "Jack","age": 21
}

对应的java代码如图:
在这里插入图片描述

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求
    在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
  /*** 创建文档*/@Testpublic void testDocument() throws IOException {// 根据id查询酒店数据Hotel hotel = iHotelService.getById(36934L);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());// 准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 发送请求restHighLevelClient.index(request, RequestOptions.DEFAULT);}

注意更改数据库地址,为本地
在这里插入图片描述
运行测试类
在这里插入图片描述
去dev_tools中查看,发现插入成功了
在这里插入图片描述

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
在这里插入图片描述

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化
5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {// 1.准备RequestGetRequest request = new GetRequest("hotel", "36934");// 2.发送请求,得到响应GetResponse response = client.get(request, RequestOptions.DEFAULT);// 3.解析响应结果String json = response.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println("查询到:" + hotelDoc );
}

输出的结果是:
在这里插入图片描述

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", "36934");// 2.发送请求client.delete(request, RequestOptions.DEFAULT);
}

执行完查看
在这里插入图片描述

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改

代码示例如图:
在这里插入图片描述
与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法
5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {// 1.准备RequestUpdateRequest request = new UpdateRequest("hotel", "36934");// 2.准备请求参数request.doc("price", "952","starName", "四钻");// 3.发送请求client.update(request, RequestOptions.DEFAULT);
}

执行后:
在这里插入图片描述

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中
步骤如下:

  1. 利用mybatis-plus查询酒店数据
  2. 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  3. 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:
在这里插入图片描述

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
在这里插入图片描述
其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1.创建RequestBulkRequest request = new BulkRequest();// 2.准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 2.1.转换为文档类型HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 2.2.创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3.发送请求client.bulk(request, RequestOptions.DEFAULT);
}

运行完去查询一下
批量查询

GET /hotel/_search

在这里插入图片描述

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_997874.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫——scrapy-3

目录 免责声明 任务 文件简介 爬取当当网内容单管道 pipelines.py items.py setting dang.py 当当网多管道下载图片 pipelines.py settings 当当网多页下载 dang.py pielines.py settings items.py 总结 免责声明 该文章用于学习&#xff0c;无任何商业用途 …

基于springboot的大学生智能消费记账系统的设计与实现(程序+数据库+文档)

** &#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;** 一、研究背景…

在PyCharm中使用Jupyter Notebooks实现高效开发

大家好&#xff0c;在数据科学领域&#xff0c;Jupyter Notebooks已成为一种流行的工具&#xff0c;许多专业人士都在使用它来进行数据分析、机器学习等任务。有时&#xff0c;我们希望在更加强大、功能齐全的IDE环境中运行Jupyter笔记本&#xff0c;以提高工作效率和开发体验。…

JS实现chatgpt数据流式回复效果

最近高了一个简单chatgpt对话功功能&#xff0c;回复时希望流式回复&#xff0c;而不是直接显示结果&#xff0c;其实很简单&#xff0c;前端流式读取即可&#xff0c;后端SSE实现流式传输 前端用到fetch获取数据&#xff0c;然后利用reader读取 let requestId parseInt(Ma…

谷歌最新版本下载最新驱动网址chrome driver Version: 122.0.6261.111

谷歌最新版本下载最新驱动网址chrome driver Version: 122.0.6261.111 https://googlechromelabs.github.io/chrome-for-testing/ 下载完之后放在谷歌安装路径下即可

git分布式管理-头歌实验冲突处理、忽略文件

一、解决冲突 任务描述 在团队协作开发过程中&#xff0c;可能你和团队中的其他成员&#xff0c;都修改了某个文件的某一部分内容&#xff0c;且其他成员已将该修改推送到了远程仓库。这样当你需要合并他的代码的时候&#xff0c;可能就会在内容上出现冲突&#xff0c;这个时候…

Mybatis从入门到CRUD到分页到日志到Lombok到动态SQL再到缓存

Mybatis 入门 1.导入maven依赖 <dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>x.x.x</version> </dependency>2.配置核心文件 <?xml version"1.0" encoding"U…

143:vue+leaflet 在25833投影坐标下,加载一小块图像叠层数据

第143个 点击查看专栏目录 本示例是介绍如何在vue+leaflet, 自定义CRS,形成新的投影,这里是25833投影,并使用 L.Proj.imageOverlay的方法在地图上加载载一小块图像叠层数据。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式…

ThreadLocal :在 Java中隱匿的魔法之力

优质博文&#xff1a;IT-BLOG-CN ThreadLocal 并不是一个Thread&#xff0c;而是 ThreadLocalVariable(线程局部变量)。也许把它命名为 ThreadLocalVar更加合适。线程局部变量就是为每一个使用该变量的线程都提供一个变量值的副本&#xff0c;是 Java中一种较为特殊的线程绑定机…

实名制交友-智能匹配-仿二狗交友系统-TP6+uni-APP小程序H5公众号-源码交付-支持二开!

一、代码风格 通常不同的开发者具备不同的代码风格&#xff0c;但为了保证语音交友系统开发质量&#xff0c;在编码前需要进行代码风格的统一&#xff0c;通过制定一定的规则&#xff0c;约束开发者的行为。具有统一风格的代码才能更清晰、更完整、更容易理解、更方便后期维护…

Python数据处理实战(5)-上万行log数据提取并分类进阶版

系列文章&#xff1a; 0、基本常用功能及其操作 1&#xff0c;20G文件&#xff0c;分类&#xff0c;放入不同文件&#xff0c;每个单独处理 2&#xff0c;数据的归类并处理 3&#xff0c;txt文件指定的数据处理并可视化作图 4&#xff0c;上万行log数据提取并作图进阶版 …

邮件营销新手必读指南?怎样做好邮件营销?

邮件营销的全流程及步骤&#xff1f;做好邮件营销有哪些注意点&#xff1f; 邮件营销作为一种传统却依然高效的推广手段&#xff0c;被众多企业所青睐。对于新手来说&#xff0c;如何开展邮件营销&#xff0c;却是一个值得探讨的话题。AokSend将为你提供一份邮件营销新手必读指…

Spring揭秘:BeanDefinitionRegistry应用场景及实现原理!

内容概要 BeanDefinitionRegistry接口提供了灵活且强大的Bean定义管理能力&#xff0c;通过该接口&#xff0c;开发者可以动态地注册、检索和移除Bean定义&#xff0c;使得Spring容器在应对复杂应用场景时更加游刃有余&#xff0c;增强了Spring容器的可扩展性和动态性&#xf…

Android视角看鸿蒙第三课(module.json中的各字段含义之nametype)

Android视角看鸿蒙第三课(module.json中的各字段含义) 前言 上篇文章我们试图找到鸿蒙app的程序入口&#xff0c;确定了在鸿蒙工程中,由AppScope下的app.json5负责应用程序的图标及名称,由entry->src->main-module.json5负责桌面图标及名称的展示。 AppScope下的app.js…

uniapp封装文字提示气泡框toolTip组件

uniapp封装文字提示气泡框toolTip组件 文字提示气泡框&#xff1a;toolTip 因为uniapp 中小程序中没有window对象&#xff0c;需手动调用 关闭 第一种办法关闭&#xff1a;this.$refs.tooltip.close() 第二种办法关闭&#xff1a;visible.sync false 移动端没有现成的toolTip组…

释机器学习中的召回率、精确率、准确率

准确率和召回率之间通常存在一定的折衷关系——当阈值较高时&#xff0c;分类器的准确率较高&#xff0c;但召回率较低&#xff1b; 当阈值较低时&#xff0c;分类器的召回率较高&#xff0c;但准确率较低 召回率(灵敏度)&#xff1a;对实际为正类的样本&#xff0c;模型能识别…

【机器学习300问】26、什么是SVM支持向量机?

〇、小卖部二分类的例子 地图上有两个小卖部A和B&#xff0c;地图上的点代表一个人&#xff0c;调查这些人去A或者B小卖部的可能性&#xff0c;根据可能性将人群分为A派和B派。假设我们只考虑人们距离小卖部的距离这一个特征&#xff0c;比如距离A小卖部近的人去A的概率大。 图…

总结Redis的原理

一、为什么要使用Redis 缓解数据库访问压力mysql读请求进行磁盘I/O速度慢&#xff0c;给数据库加Redis缓存&#xff08;参考CPU缓存&#xff09;&#xff0c;将数据缓存在内存中&#xff0c;省略了I/O操作 二、Redis数据管理 2.1 redis数据的删除 定时删除惰性删除内存淘汰…

医学大数据|统计基础|医学统计学(笔记):开学说明与目录

开始学习统计基础&#xff0c;参考教材&#xff1a;医学统计学第五版 点点关注一切来学习吧 责任编辑&#xff1a;医学大数据刘刘老师&#xff1a;头部医疗大数据公司医学科学部研究员 邮箱&#xff1a;897282268qq.com 久菜盒子工作室 我们是&#xff1a;985硕博/美国全奖…

Git 掌握

目录 一、前言 二、centos安装Git 三、Git基本操作 (1) 创建Git本地仓库 (2) 配置Git (3) 认识工作区&#xff0c;暂存区&#xff0c;版本库 四、添加文件 五、查看.git文件 六、修改文件 七、版本回退 八、撤销修改 (1) 场景一 对于还没有add的代码 (2) 场景二 已…