C++初阶:初识C++

news/2024/4/13 10:42:01/文章来源:https://blog.csdn.net/qq_71806743/article/details/136476633

目录

  • 1. 前言:C++ 与 C语言
  • 2. C++对于C语言语法的完善与补充
    • 2.1 命名冲突与命名空间
      • 2.1.1 命名空间的定义
      • 2.1.2 调用方式
    • 2.3 补充:流的概念
    • 2.4 缺省参数
      • 2.4.1 缺省参数的使用
    • 2.5 函数重载
      • 2.5.1 什么是函数重载
      • 2.5.2 函数重载的使用
      • 2.5.3 特殊情况:函数重载与缺省参数的冲突
    • 2.6 引用与指针
      • 2.6.1 什么是引用
      • 2.6.2 引用的使用方式
      • 2.6.3 const常引用
      • 2.6.4 引用的应用场景
      • 2.6.5 补充
    • 2.7 内联函数
      • 2.7.1 什么是内联函数
      • 2.7.2 内联函数的调用机制
      • 2.7.3 C++与宏
    • 2.8 关键字auto
    • 2.9 范围for
    • 2.10 指针空值nullptr

1. 前言:C++ 与 C语言

  1. 相对于C语言面向过程的编程语言,C++在继承C的基础上进行发展与补足,为C语言添加了面向对象方面的内容(类与对象,继承多态,模板)
  2. 面向对象与面向过程:如果将编程比作洗衣服,那么面向过程的编程就好比我们自己一步一步的进行衣物浆洗(接水,放入洗衣液,浸泡,手搓),而面向对象编程就是洗衣机,我们只用将衣服放入,倒水倒洗衣液,具体的细节我们无需关系。总的来说,C关心得是过程,而C++只用关注对象与对象及其他们的关系。

2. C++对于C语言语法的完善与补充

2.1 命名冲突与命名空间

在C语言的学习中,我们了解,在一个变量或函数的声明周期内,与它同一作用域中,不能创建与其同名的变量或函数。这在很多时候导致了不便,对于代码的可读性与灵活性也存在一定影响,而在C++中引入了命名空间这一新语法很好的解决了这一问题,接下来就让我们进行这方面的学习。

2.1.1 命名空间的定义

  1. 定义方式:关键字namespace后加空间名
  2. 作用:
    <1>正常变量的作用范围是它声明周期内的整个作用域,而命名空间就像是一个院子,将其空间内变量函数等封装了起来。
    <2> 正常检索下不会进入命名空间内,只有使用时指定才会在进入其中检索。
    <3> 命名空间内的变量,函数,自定义类型等与命名空间外的同名变量,函数,自定义类型不冲突。

定义方式:

namespace space1//[自定义名称]
{//变量。。。。int a;//函数。。。。int Add(int num1, int num2){}//自定义类型。。。。typedef struct Node{}Node;
}

补充(命名空间可以嵌套使用):

namespace space1
{namespace space2{int a;}
} 

2.1.2 调用方式

调用方式1:(指定命名空间)

//调用命名空间内的资源
//变量
space::a = 1;
//函数
int ret = space::Add(1, 2);
//自定义类型
space1::Node node1;//嵌套命名空间的调用方式
space1::space2::a = 1;

调用方式2:(打开命名空间)

//打开命名空间,打开命名空间后可以不使用后缀访问其内资源
using namespace space;using namespace space1::space2;

调用方式3:(将单个命名空间中的资源引入)

//引入space1空间中的a
using space1::a;
a = 2;using space1::space2::a;

补充:

C++库中有自己的命名空间,比如std,是C++头文件<iostream>中的命名空间,其内部有一些很重要的资源。示例如下:

  1. 注:C++中的头文件不带.h,以与C中的头文件做区分
using namespace std;//cout为继承ostream类型的对象
// << 为流插入操作符
//endl为行结束标志
cout << "hello world" << endl;
  1. 语句意义:向cout中插入信息,将信息插入到显示器上
  2. <<流插入操作符

2.3 补充:流的概念

  1. 因为有各种各样的硬件设备,它们之间的组成与结构不同,为了方便各个硬件间的协同工作,我们引入流的概念。
  2. 将电脑中的信息理解为一股有方向的流,我们不关心信息交换的具体方式,只理解为有一条条信息组成的"河流"从源头设备流入向目标设备。
  3. 流插入操作符的意义即为,将指定的信息插入到指定设备中去。(cout标准输出对象:控制台,cin标准输入对象:键盘)
int num1 = 0;
//从键盘上读取数据将其存放入变量num中
cin >> num1;int num2, num3;
//可连续读取
//回车或空格间隔
cin >> num2 >> num3;//可连续插入
cout << num1 << ' ' << num2 << ' ' << num3 << endl;

2.4 缺省参数

2.4.1 缺省参数的使用

  1. 我们在创建定义函数时,往往要给函数定义参数。带有参数的函数,当我们调用时传参不可缺漏。
  2. 而在C++中对于函数参数添加了新的内容,使得这一定则有了新的补充,方便了我们的日常使用
  3. 在C语言程序中,函数参数的传递是不可省略的,否则必将报错 ,C++中在传参中有时可以省略,具体规则如下:

全缺省:

函数参数都赋予缺省值,方式如下:

void Print(int a  = 0, int b = 0, int c = 0)
{cout << a << ' ' << b << ' ' << c << endl;
}

半缺省:

函数参数赋予部分缺省值,方式如下:

  1. 注1:缺省值的赋予不可中断不连续
  2. 注2:缺省值的赋予必须从第一个参数开始,不可以跳过第一个参数
//示例1:(正确)
void Print(int a = 0, int b = 0, int c)
{cout << a << ' ' << b << ' ' << c << endl;
}//示例2:(错误)
void Print(int a = 0, int b, int c = 0)
{cout << a << ' ' << b << ' ' << c << endl;
}//示例3:(错误)
void Print(int a, int b = 0, int c = 0)
{cout << a << ' ' << b << ' ' << c << endl;
}

2.5 函数重载

2.5.1 什么是函数重载

编程习惯上,我们常常说 “名称即含义”,因此,函数名也会简单概括函数的功能,使得代码的可读性大大提高。

//示例1:
void swap1(int* num1, int* num2)
{int tmp = *num1;*num1 = *num2;*num2 = tmp;
}void swap2(char* str1, char* str2)
{char tmp = *str1;*str1 = *str2;*str2 = tmp;
}//示例2:
int Add1(int num1, int num2)
{return num1 + num2;
}int Add1(int num1, int num2, int num3)
{return num1 + num2 + num3;
}

可是,随着代码量的提高,很多函数都会具有类似的功能,可是细节不同,参数类型不同此时,此时函数的命名就会变得非常繁琐与麻烦,无法很好的在场景中应用。因为存在这一问题,C++添加了函数重载的内容。

函数重载与编译器的函数名修饰规则:

在C/C++中,一份程序想要运行要经历预处理,编译,汇编,链接,这几个阶段。当程序编译运行时,检测到调用的函数,在调用处是没有函数定义的,所以就要进行项目内各个文件的链接合并,在符号表中查询函数名并调用相应的函数地址。

  1. C语言中符号并表中只存有简单的函数名,当存在同名函数时编译器无法识别。
  2. C++中会对编译链接时会对函数名进行,下面简述Linux操作系统下g++的函数名修饰规则,[_Z] + [函数名长度] + [函数名首字母] + [函数类型首字母]

2.5.2 函数重载的使用

两个同名函数之间是否构成重载,只与参数类型,参数个数有关,与返回值无关。

参数类型不同(构成):

//构成重载
void swap(int* left, int* right)
{int tmp = *left;*left = *right;*right = tmp;
}void swap(char* left, char* right)
{char tmp = *left;*left = *right;*right = tmp;
}//调用方式:
int a = 10;
int b = 20;
swap(&a, &b);char c1 = 'a';
char c2 = 'b';
swap(&c1, &c2);

参数个数不同(构成):

int Add(int nums1, int nums2)
{return nums1 + nums2;
}int Add(int nums1, int nums2, int nums3)
{return nums1 + nums2 + nums3;
}//调用方式:
cout << Add(10, 20) << endl;cout << Add(10, 20, 30) << endl;

参数数量与类型相同,返回值不同(不构成):

int f()
{return 10;
}void f()
{cout << 10 << endl;
}

2.5.3 特殊情况:函数重载与缺省参数的冲突

//记作Print1
void Print(int a = 0)
{cout << a << endl;
}//记作Print2
void Print()
{cout << 0 << endl
}

上述情况下,Print1的缺省调用与Print2的调用具有相同的语句,编译无法处理会进行报错,在编写代码的过程中,不要进行如上操作。

2.6 引用与指针

  1. 在C语言的学习中,我们知道在对函数进行传参时,我们正常情况下向函数传递的只是参数的拷贝,如果我们想要在函数内对参数进行操作更改,我传参时就需要给函数传递参数的指针,再于函数内部对参数地址解引用,然后再对参数本身进行操作。
  2. 在C++中,我们有了可以简化这一过程的新增语法操作,“引用”,接下来就让我们对其进行学习。

2.6.1 什么是引用

引用,我们可以从语法层面将其简单理解为,对一个已经存在的元素"取别名",取名后新的名称也同样代表着原本的那个元素,对别名操作同样会对参数造成影响,两者的区别只有名称上的不同。

int a = 10;
int& b = a;b++;
cout << a << endl;

在这里插入图片描述

2.6.2 引用的使用方式

定义方式:[参数类型]& 变量别名 = 变量

  1. 注:引用必须进行初始化,否则会发生报错
  2. 注:一个变量可以取多个别名,即被多次引用
  3. 注:引用一个变量后,就无法再引用其他的变量
int a = 10;//定义方式
int& b = a;//报错,必须初始化
int& c;

2.6.3 const常引用

  1. C语言中,我们学习过const修饰变量,const修饰的变量具有常属性,而具有常属性的变量无法被修改。
  2. 在引用中,const修饰的变量我们正常情况下无法正常引用,需要对引用也进行const修饰才能正常引用,此种别名也具有常性不能被修改。
//常变量
const int a = 10;
//常引用
const int& b = a;
  1. 因为常引用只读不改的特性,所以它也可以直接引用常量
const int& b = 10;
  1. 常引用可以引用变量,但引用不可以引用常变量(权限可以缩小不能放大)
  2. 跨类型的常饮用同样可能会导致数据精度的丢失
double c = 3.14;
//精度丢失
const int& d = c;//3

2.6.4 引用的应用场景

  1. 作参数
void swap(int& num1, int& num2)
{int tmp = num1;num1 = num2;num2 = tmp;
}
  1. 做返回值
int& Add(int num1, int num2)
{static int sum = 0;sum = num1 + num2;return sum;
}
  1. 引用做返回值,源变量的销毁(源变量的声明周期仅为函数体内,随着函数调用结束,变量销毁)
int& Add(int num1, int num2)
{int sum = num1 + num2;return sum;
}//err
int ret = Add(10, 20);

2.6.5 补充

  1. 值返回比引用返回的效率低,值返回会在返回过程中创建一个中间变量,而引用则是直接返回数据本身。
  2. 引用与指针的区别:
    <1> 在概念上,引用是定义了一个变量的别名,而指针是存储了变量的地址
    <2> 在初始化时,引用必须进行初始化,而指针可以不初始化
    <3> 指针存在NULL指针,而引用不存在空引用
    <4> 引用在初始化引用一个目标后,后续不可再更改引用其他目标,而指针可以
    <5> 引用的大小是引用目标本身的大小,而指针大小只会是4/8字节
    <6> 引用加1是对本身元素加1,而指针则是加一步(指针步长由指针类型决定)
    <7> 使用上,指针需要解引用才能对指向对象进行操作,引用我们则是可以直接进行操作(具体细节由编译器执行)
    <8> 有多级指针,但没有多级引用
    <9> 引用比指针更加安全

2.7 内联函数

2.7.1 什么是内联函数

  1. 在编写程序时,我们经常会进行函数的定义,将需要的功能模块化从而优化代码的结构,提高代码的可读性。
  2. 可是有些时候,编写的函数非常短小,为此再专门开辟栈帧来调用,当此函数被多次反复调用时反而会很大程度上影响程序的效率,因此我们引入内联函数。

内联函数的定义方式:在函数名前加上关键字inline

inline int Add(int num1, int num2)
{return num1 + num2;
}

2.7.2 内联函数的调用机制

  1. 内联函数不会再去额外开辟栈帧,而是将函数体内的语句在调用处直接展开,然后依次执行
  2. 我们对于函数的inline声明,编译器并不一定会进行执行,此行为只相当于我们给编译器提建议,具体如何操作由编译器考量(当函数过于复杂,语句数量超过一定限度,如:75)
  3. 内联函数可能会导致目标文件内代码量的膨胀
  4. 内联函数不建议使用定义与声明分离的操作,因为内联函数会在条用处直接展开,声明展开后就无法找打定义处的函数地址

2.7.3 C++与宏

  1. 在C语言中我们学习过宏,它的存在可以让增强了代码的复用性,提升了代码效率。可同时他也有着不可忽视的缺点,它的替换机制为我们的调试代码很大的不方便,维护起来及其不方便,同时也没有类型检查使得安全下降,针对他的两个使用场景C++中有了其的上位选择(有同时优点的同时,规避了缺点)
  2. 使用场景:
    <1> 短小函数 :内联函数
    <2> 替换常量:枚举

枚举示例:

//宏
//#define day 0//枚举可调试
enum Day
{Mon,Tues,Feb,Thu,Fir,Sat,Sun
}Day day = Tue;
cout << "today is " << day << endl;

2.8 关键字auto

  1. 使用场景:auto可以自动推导处变量的类型,当参数类型过长,或复杂易错时我们可以用auto关键字代替。
  1. 可搭配指针与引用使用,具体如下:
int i = 10;auto a = &i;auto* b = &i;auto& c = i;//得到变量的类型cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;*a = 20;*b = 30;c = 40;
  1. auto不可作为函数参数,无法得出函数的参数类型
//err
int Add(auto num1, auto num2)
{return num1 + num2;	
}
  1. auto无法直接定义数组
//err
auto arr[] = {1,2,3,4,5,6};

2.9 范围for

在C语言的逻辑for语句中,我们想要利用其进行数组的遍历时,必须要创建一个中间变量作为下标来进行元素的遍历,而范围for只需要给定需遍历数组即可,语法上更为方便简洁,具体如下:

int arr[] = {1,2,3,4,5,6};
//普通for循环
int i = 0;
for(i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{cout << arr[i] << endl;
}//范围for
for(auto e : arr)
{cout << e << endl;
}
  1. 范围for中的变量只是临时拷贝,对其的更改无法直接影响数组,需要指定变量类型为引用才可对值进行更改
for(auto e : arr)
{e *= 2;
}for(auto e : arr)
{cout << e << endl;
}for(auto& e : arr)
{e *= 2;
}
  1. 在后续的类与对象中我们会了解到其与迭代器的关系(实为傻瓜式的替换)

2.10 指针空值nullptr

在C语言中,我们查看源文件会发现NULL是0的宏替换,因为此种定义方式,其可能会在使用中造成如下的一些错误。

void f(int* p)
{cout << "int*" << endl;
}void f(int p)
{cout << "int" << endl;
}f(NULL);

运行结果:
在这里插入图片描述

在C++中,对这一缺漏有了补足,C++中新增空指针为nullptr,相当于(void)0*。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_996933.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 热部署。

SpringBoot 热部署。 文章目录 SpringBoot 热部署。 pom.xml。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional…

Android 12.0 系统wifi列表显示已连接但无法访问网络问题解决

1.前言 在12.0的系统rom产品定制化开发中,在wifi模块也很重要,但是在某些情况下对于一些wifi连接成功后,确显示已连接成功,但是无法访问互联网 的情况,所以实际上这时可以正常上网的,就是显示的不正常,所以就需要分析连接流程然后解决问题 如图所示: 2.系统wifi列表显示…

IEEE 802.11 RTS/CTS/BA/Management

RTS/CTS IEEE 802.11 RTS/CTS即RTS/CTS协议(Request To Send/Clear To Send)即请求发送/清除发送协议是被802.11无线网络协议采用的一种用来减少由隐藏节点问题所造成的冲突的机制。 相当于一种握手协议,主要用来解决"隐藏终端"问题。"隐藏终端"(Hid…

HTML静态网页成品作业(HTML+CSS)——舞蹈网页设计制作(5个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码CSS部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有5个页面。 &#x1…

javaWebssh在线授课辅导系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh在线授课辅导系统是一套完善的web设计系统&#xff08;系统采用ssh框架进行设计开发&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用 B/S模式开发。开发环境为TOMCAT7.…

用户角色的重要性:确保财务数据安全的最佳方式

在企业的财务管理业务中&#xff0c;一个人几乎不可能完成所有的财务记账任务&#xff0c;例如设定预算、发票审批等等&#xff0c;至少不能有效地执行。最为明智的方式&#xff0c;是将这些任务分派给特定的人员&#xff0c;比如部门经理、财务经理或者销售、市场人员等等。 但…

设计模式(二)单例模式

单例模式&#xff1a;确保一个类只有一个实例&#xff0c;并提供了全局访问点&#xff1b;主要是用于控制共享资源的访问&#xff1b; 单例模式的实现分为懒汉式和饿汉式。 懒汉式单例在需要时才会创建&#xff0c;而饿汉式单例则在类加载时立即创建实例&#xff1b; 单例模…

【airtest】自动化入门教程(二)airtest操作

目录 一、touch 二、wait 三、swipe 四、exists 五、text 六、keyevent 七、snapshot 八、sleep 九、断言 9.1 assert_exists 9.2 assert_not_exists 9.3 assert_equal 9.4 assert_not_equal 前言&#xff1a;本文主要针对aritest部分的基础操作,aritest是一个跨平…

Selenium上传文件有多少种方式?不信你有我全

Selenium 封装了现成的文件上传操作。但是随着现代前端框架的发展&#xff0c;文件上传的方式越来越多样。而有一些文件上传的控件&#xff0c;要做自动化控制会更复杂一些&#xff0c;这篇文章主要讨论在复杂情况下&#xff0c;如何通过自动化完成文件上传 1.input 元素上传文…

前端从普通登录到单点登录(SSO)

随着前端登录场景的日益复杂化和技术思想的不断演进&#xff0c;前端在登录方面的知识结构变得越来越复杂。对于前端开发者来说&#xff0c;在日常工作中根据不同的登录场景提供合适的解决方案是我们的职责所在&#xff0c;本文将梳理前端登录的演变过程。 1、无状态的HTTP H…

蜘蛛池是什么意思,怎么生成蜘蛛池

蜘蛛池是由自然界中的蜘蛛群落构成的一个小生态系统&#xff0c;也是身处自然界中的游客们可以在风雨中体验到最贴近自然气息的地方。 点开我主页面 Baidu蜘蛛的作用&#xff1a; 引蜘蛛逐渐收录&#xff0c;降权引蜘蛛可以疗伤&#xff0c;排名/收录不稳定&#xff0c;没有收…

Transformer中的FeedForward

Transformer中的FeedForward flyfish class PoswiseFeedForwardNet(nn.Module):def __init__(self, d_ff2048):super(PoswiseFeedForwardNet, self).__init__()# 定义一维卷积层 1&#xff0c;用于将输入映射到更高维度self.conv1 nn.Conv1d(in_channelsd_embedding, out_ch…

3.7作业

一 1&#xff09;应用层 负责处理不同应用程序之间的通信&#xff0c;需要满足提供的协议&#xff0c;确保数据发送方和接收方的正确 应用层提供的协议&#xff1a; &#xff08;2&#xff09;表示层 负责网络中通信的数据的编码和格式&#xff0c;确保通信过程中…

rust入门(1)创建项目

安装 vscode 安装插件 rust-analyzerNative Debug vscode 配置自动格式化代码 settings.json{"editor.defaultFoldingRangeProvider": null,"[rust]": {"editor.defaultFormatter": "rust-lang.rust-analyzer", // Makes the magi…

基于AFDPF主动频率偏移法的孤岛检测Simulink仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于AFDPF主动频率偏移法的孤岛检测Simulink仿真。 2.系统仿真结果 3.核心程序与模型 版本&#xff1a;MATLAB2022a 36 4.系统原理简介 在分布式发电系统中&#xff0c;孤…

【实战】K8S集群部署nacos并接入Springcloud项目容器化运维

文章目录 前言Nacos集群搭建Spring cloud配置nacos将Springcloud项目部署在k8s写在最后 前言 相信很多同学都开发过以微服务为架构的系统&#xff0c;开发微服务必不可少要使用注册中心&#xff0c;比如nacos\consul等等。当然在自动化运维流行的今天&#xff0c;我们也会将注…

windows部署ruoyi-vue-pro

前提 安装java 安装maven 安装redis mysql 源代码下载 后端 ruoyi-vue-pro 前端 yudao-ui-admin-vue3 后端项目 配置maven 导入数据 CREATE DATABASE ruoyi_vue_pro;修改mysql连接配置 修改redis 打包项目 mvn clean install package -Dmaven.test.skiptrue启动YudaoSe…

QEMU调试——通过获取设备树(dtb文件)查询开发板的外设地址信息

1、适用场景 使用qemu时&#xff0c;想快速知道开发板的地址空间映射情况&#xff0c;特别是某些外设控制器的寄存器基地址 2、查询QEMU支持的开发板 qemu-system-riscv32.exe -M ? 3、获取开发板对应的dtb文件 1、qemu-system-riscv32.exe -M nuclei_evalsoc 2、dumpdtb nucl…

C#,无监督的K-Medoid聚类算法(K-Medoid Algorithm)与源代码

1 K-Medoid算法 K-Medoid&#xff08;也称为围绕Medoid的划分&#xff09;算法是由Kaufman和Rousseeuw于1987年提出的。中间点可以定义为簇中的点&#xff0c;其与簇中所有其他点的相似度最小。 K-medoids聚类是一种无监督的聚类算法&#xff0c;它对未标记数据中的对象进行聚…

@ResponseStatus

目录 概述&#xff1a; 用途&#xff1a; 参数&#xff1a; 注意事项&#xff1a; 自定义异常类&#xff1a; 底层原理&#xff1a; 概述&#xff1a; 在 Spring MVC 中&#xff0c;我们有很多方法来设置 HTTP 响应的状态码其中最直接的方法&#xff1a;使用 ResponseSt…