【数据结构】核心数据结构之二叉堆的原理及实现

news/2024/5/5 5:56:08/文章来源:https://blog.csdn.net/weixin_47533244/article/details/129370551

1.大顶堆和小顶堆原理

  • 什么是堆

    • 堆(Heap)是计算机科学中一类特殊的数据结构,通常是一个可以被看作一颗完全二叉树的数组对象。

    • 完全二叉树

      • 只有最下面两层节点的度可以小于2,并且最下层的叶节点集中在靠左连续的边界

      • 只允许最后一层有空缺结点且空缺在右边,完全二叉树需保证最后一个节点之前的节点都齐全;

      • 对任一结点,如果其右子树的深度为j,则其左子树的深度必为j或j+1

在这里插入图片描述

  • 什么是大顶堆(最大堆)
    • 大顶堆是一种完全二叉树,其每个父节点的值都大于或等于其子节点的值,即根节点的值最大。
    • 每个节点的两个子节点顺序没做要求,和之前的二叉查找树不一样。

在这里插入图片描述

  • 什么是小顶堆(最小堆)

    • 小顶堆是一种完全二叉树,其每个父节点的值都小于或等于其子节点的值,即根节点的值最小。

    • 每个节点的两个子节点顺序没做要求,和之前的二叉查找树不一样

在这里插入图片描述

  • 存储原理

    • 一般升序采用大顶堆,降序采用小顶堆。
    • 堆是一种非线性结构,用数组来存储完全二叉树是非常节省空间的,把堆看作一个数组。
      • 方便操作,一般数组的下标0不存储,直接从1节点存储。
    • 堆其实就是利用完全二叉树的结构来维护一个数组
    • 数据下表为k的节点
      • 左子节点下标为2*k的节点。
      • 右子节点就是下表为2*k+1的节点。
      • 父节点就是下标为k/2取证的节点。
  • 公式描述一下堆的定义

    • 大顶堆:arr[k] >= arr[2k+1] && arr[k] >= arr[2k]
    • 小顶堆:arr[k] <= arr[2k+1] && arr[k] <=arr[ak]
  • 小顶堆动画效果演示

  • 往堆中插入新元素,就是往数组中从索引0或1开始依次存放数据,但是顺序需要满足堆的特性

  • 如何让堆满足:
    • 不断比较新节点 arr[k]和对应父节点arr[k/2]的大小,根据情况交互元素位置
    • 直到找到的父节点比当前新增节点大则结束

在这里插入图片描述

2.大顶堆构编码实现

  • 大顶堆(最大堆)

    • 大顶堆是一种完全二叉树,其每个父节点的值都大于或等于其子节点的值,即根节点的值最大

在这里插入图片描述

  • 编码实现
public class Heap {//用数组存储堆中的元素private int[] items;//堆中元素的个数private int num;public Heap(int capacity) {//数组下标0不存储数据,所以容量+1this.items = new int[capacity + 1];this.num = 0;}/*** 判断堆中 items[left] 元素是否小于 items[right] 的元素*/private boolean rightBig(int left, int right) {return items[left] < items[right];}/*** 交换堆中的两个元素位置*/private void swap(int i, int j) {int temp = items[i];items[i] = items[j];items[j] = temp;}/*** 往堆中插入一个元素,默认是最后面,++num先执行,然后进行上浮判断操作*/public void insert(int value) {items[++num] = value;up(num);}/*** 使用上浮操作,新增元素后,重新堆化* 不断比较新节点 arr[k]和对应父节点arr[k/2]的大小,根据情况交互元素位置* 直到找到的父节点比当前新增节点大则结束* <p>* 数组中下标为 k 的节点* 左子节点下标为 2*k 的节点* 右子节点就是下标 为 2*k+1 的节点* 父节点就是下标为 k/2 取整的节点*/private void up(int k) {//父节点 在数组的下标是1,下标大于1都要比较while (k > 1) {//比较 父结点 和 当前结点 大小if (rightBig(k / 2, k)) {//当前节点大,则和父节点交互位置swap(k / 2, k);}// 往上一层比较,当前节点变为父节点k = k / 2;}}/*** 删除堆中最大的元素,返回这个最大元素*/public int delMax() {int max = items[1];//交换索引 堆顶的元素(数组索引1的)和 最大索引处的元素,放到完全二叉树中最右侧的元素,方便后续变为临时根结点// 为啥不能直接删除顶部元素,因为删除后会断裂,成为森林,所以需要先交互,再删除swap(1, num);//最大索引处的元素删除掉, num--是后执行,元素个数需要减少1items[num--] = 0;//通过下浮调整堆,重新堆化down(1);return max;}/*** 使用下沉操作,堆顶和最后一个元素交换后,重新堆化* 不断比较 节点 arr[k]和对应 左节点arr[2*k] 和 右节点arr[2*k+1]的大小,如果当前结点小,则需要交换位置* 直到找到 最后一个索引节点比较完成  则结束* 数组中下标为 k 的节点* 左子节点下标为 2*k 的节点* 右子节点就是下标 为 2*k+1 的节点* 父节点就是下标为 k/2 取整的节点*/private void down(int k) {//最后一个节点下标是numwhile (2 * k <= num) {//记录当前结点的左右子结点中,较大的结点int maxIndex;if (2 * k + 1 <= num) { //2 * k + 1 <= num 是判断 确保有右节点//比较当前结点下的左右子节点哪个大if (rightBig(2 * k, 2 * k + 1)) {maxIndex = 2 * k + 1;} else {maxIndex = 2 * k;}} else {maxIndex = 2 * k;}//比较当前结点 和 较大结点的值, 如果当前节点较大则结束if (items[k] > items[maxIndex]) {break;} else {//否则往下一层比较,当前节点k索引 变换为 子节点中较大的值swap(k, maxIndex);//变换k的值k = maxIndex;}}}public static void main(String[] args) {Heap heap = new Heap(20);heap.insert(42);heap.insert(48);heap.insert(93);heap.insert(21);heap.insert(90);heap.insert(9);heap.insert(3);heap.insert(40);heap.insert(32);int top;System.out.println("输出堆:");while ((top = heap.delMax()) != 0) {System.out.print(top + " ");}}
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_78345.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中电金信源启小程序开发平台 赋能金融+业务生态共享共建

导语&#xff1a;源启小程序开发平台立足于“为金融业定制”&#xff0c;从小程序全生命周期的角度出发&#xff0c;助力银行、互联网金融、保险、证券客户实现一站式小程序开发、发布、运营与营销。企业可以通过源启小程序开发平台&#xff0c;低成本高效率开发一款定制化小程…

模电学习11 运算放大器学习入门

一、基本概念 运算放大器简称运放&#xff0c;是一种模拟电路实现的集成电路&#xff0c;可以对信号进行很高倍数的放大。一般有正相输入端、反相输入端、输出端口、正电源、负电源等接口。 运放可工作在饱和区、放大区&#xff0c;其中放大区极其陡峭&#xff0c;因为运放的放…

【C++】30h速成C++从入门到精通(stack、queuepriority_queue以及deque介绍)

stackstack的介绍https://cplusplus.com/reference/stack/stack/?kwstackstack是一种容器适配器&#xff0c;专门在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行元素的插入与提取操作。stack是作为容器适配器被实现的&#xff0c;容器适配器即是对特…

Greenplum-MVCC与数据可见性判断

众所周知&#xff0c;Greenplum内部支持MVCC多版本并发控制&#xff0c;通过MVCC技术&#xff0c;可以支持同一行数据的读写并发问题&#xff0c;从而大大提升并发访问控制的能力。 GP中的MVCC实现 所谓多版本&#xff0c;其含义在于数据的更新和删除操作并不是直接在原数据上…

(小甲鱼python)函数笔记合集七 函数(IX)总结 python实现汉诺塔详解

一、基础复习 函数的基本用法 创建和调用函数 函数的形参与实参等等函数的几种参数 位置参数、关键字参数、默认参数等函数的收集参数*args **args 解包参数详解函数中参数的作用域 局部作用域 全局作用域 global语句 嵌套函数 nonlocal语句等详解函数的闭包&#xff08;工厂函…

产品新人如何培养产品思维?

什么是产品思维&#xff1f;其实很难定义&#xff0c;不同人有不同的定义。有的人定义为以用户为中心打磨一个完美体验的产品&#xff1b;有的定义为从需求调研到需求上线各个步骤需要思考的点&#xff0c;等等。本文想讨论的产品思维是&#xff1a;怎么去发现问题&#xff0c;…

【JavaSE】逻辑控制语句

文章目录一. 顺序结构二. 分支结构1. if 语句2. switch 语句3、循环结构3.1 while 循环3.2 do while 循环3.3 for 循环3.4 break 和 continue三. 输入输出1. 输出到控制台2. 从键盘输入一. 顺序结构 顺序结构比较简单&#xff0c;即程序按照代码书写的顺序一行一行执行下去。 …

BS系统中的安全方案(SSO和Oauth2认证,数据加密)

摘要用户用浏览器打开网站&#xff0c;DNS会根据域名找到相应的服务器IP给到浏览器&#xff0c;仅接着用户的浏览器会与服务器建立连接&#xff0c;通过网路上的各个设备(交换机、路由器、基站、光纤等)&#xff0c;将服务器上的数据发送到用户的电脑上&#xff0c;在浏览器里呈…

函数式编程:Lambda 表达式

函数式编程&#xff1a;Lambda 表达式 每博一文案 曾经读过的依然令我感动的句子&#xff0c;生活总是不如意&#xff0c;但往往是在无数痛苦中&#xff0c;但往往是在无数痛苦中&#xff0c;在重重矛盾 和艰难中才能成熟起来&#xff0c;坚强起来&#xff0c;爱情啊&#xf…

EXCEL里的各种奇怪计算问题:数字后面自动多了 0.0001, 数字后面位数变成000,以及一些取整,数学函数

1 公式计算后的数&#xff0c;用只粘贴数值后&#xff0c;后面自动多了 0.0001&#xff0c;导致不再是整数的问题 问题入戏 见第1个8400&#xff0c;计算时就出现了问题&#xff0c;按正常&#xff0c;这里8400应该是整数&#xff0c;而不应该带小数&#xff0c;但是确实就计…

vmware虚拟机与树莓派4B安装ubuntu1804 + ros遇到的问题

如题所示&#xff0c;本人在虚拟机上安装ubuntu1804&#xff0c;可以很容易安装&#xff0c;并且更换系统apt源和ros源&#xff0c;然后安装ros&#xff0c;非常顺利&#xff0c;但是在树莓派4B上安装raspiberry系统就遇到了好多问题。 树莓派我烧录的是这个镜像&#xff1a;ub…

k8s-Kubernetes集群部署

文章目录前言一、Kubernetes简介与架构1.Kubernetes简介2.kubernetes设计架构二、Kubernetes集群部署1.集群环境初始化2.所有节点安装kubeadm3.拉取集群所需镜像3.集群初始化4.安装flannel网络插件5.扩容节点6.设置kubectl命令补齐前言 一、Kubernetes简介与架构 1.Kubernetes…

L - Let‘s Swap(哈希 + 规律)

2023河南省赛组队训练赛&#xff08;四&#xff09; - Virtual Judge (vjudge.net) 约瑟夫最近开发了一款名为Pandote的编辑软件&#xff0c;现在他正在测试&#xff0c;以确保它能正常工作&#xff0c;否则&#xff0c;他可能会被解雇!Joseph通过实现对Pandote上字符串的复制和…

断点调试(debug)

目录 F8案例 ​编辑 debug过程中报错 ​编辑用debug查看方法源码 一层一层查看 Arrays.sort()方法 F9 DebugExercise 介绍&#xff1a;断点调试是指在程序的某一行设置一个断电&#xff0c;调试时&#xff0c;程序运行到这一行就会停住&#xff0c;然后可以一步步往下调试…

项目实战典型案例17——环境混用来带的影响

环境混用来带的影响一&#xff1a;背景介绍背景出现的事故二&#xff1a;思路&方案环境混用的危害如何彻底避免环境混用的问题四&#xff1a;总结五&#xff1a;升华一&#xff1a;背景介绍 本篇博客是对对项目开发中出现的环境混用来带的影响进行的总结并进行的改进。目的…

JAVA后端部署项目三步走

1. JAVA部署项目三步走 1.1 查看 运行的端口 lsof -i:8804 &#xff08;8804 为端口&#xff09; 发现端口25111被监听 1.2 杀死进程,终止程序 pid 为进程号 kill -9 pid 1.3 后台运行jar包 nohup java -jar -Xms128M -Xmx256M -XX:MetaspaceSize128M -XX:MaxM…

基于半车悬架的轴距预瞄与轴间预瞄仿真对比

目录 前言 1. 半车悬架模型 2.轴距预瞄(单点预瞄)和轴间预瞄(两点预瞄)原理与仿真分析 2.1轴距预瞄(单点预瞄) 2.1.1预瞄原理 2.2.轴间预瞄(两点预瞄) 2.2.1预瞄原理 2.3仿真分析 3.总结 前言 对于悬架而言&#xff0c;四个车轮实际的输入信息是受到前后延时以及左右相…

Jetpack Compose 中的重组作用域和性能优化

只有读取可变状态的作用域才会被重组 这句话的意思是只有读取 mutableStateOf() 函数生成的状态值的那些 Composable 函数才会被重新执行。注意&#xff0c;这与 mutableStateOf() 函数在什么位置被定义没有关系。读取操作指的是对状态值的 get 操作。也就是取值的操作。 从一…

路由协议(OSPF、ISIS、BGP)实验配置

目录 OSPF基础实验 建立OSPF邻居 配置虚连接 配置接口的网络类型 配置特殊区域 配置路由选路 配置路由过滤 ISIS基础实验配置 配置ISIS邻居建立 配置认证 配置路由扩散 配置路由过滤 配置定时器 BGP基础实验配置 建立BGP对等体 建立IBGP对等体 建立EBGP对等体…

音频基础知识简述 esp-sr 上手指南

此篇博客先对音频基础知识进行简要叙述&#xff0c;然后帮助读者入门 esp-sr SDK。 1 音频的基本概念 1.1 声音的本质 声音的本质是波在介质中的传播现象&#xff0c;声波的本质是一种波&#xff0c;是一种物理量。 两者不一样&#xff0c;声音是一种抽象的&#xff0c;是声…