一篇了解分布式id生成方案

news/2024/5/20 22:48:09/文章来源:https://blog.csdn.net/qq_45058208/article/details/129178643

系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。生成ID的方法有很多,适应不同的场景、需求以及性能要求。所以有些比较复杂的系统会有多个ID生成的策略。下面就介绍一些常见的ID生成策略。

1.数据库自增长序列或字段

最常见的方式。利用数据库,全数据库唯一

关系型数据库都实现数据库自增ID;mysql通过auto_increment实现、oralce通过sequence实现。
在数据库集群环境下,不同数据库节点可设置不同起步值、相同步长值来实现集群下生成全局唯一、递增ID

优点:

1)简单,代码方便,性能可以接受。
2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
3)在性能达不到要求的情况下,比较难于扩展。
4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。
5)分表分库的时候会有麻烦。

2.UUID

常见的方式。可以利用数据库也可以利用程序生成,一般来说全球唯一。

140a5382-c69a-4c14-84e8-07c95a9bae2b

优点:

1)简单,代码方便。
2)生成ID性能非常好,基本不会有性能问题。
3)全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。

缺点:

1)没有排序,无法保证趋势递增。
2)UUID往往是使用字符串存储,查询的效率比较低。
3)存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。
4)传输数据量大
5)不可读。不方便操作!

3.Redis生成ID

当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCRINCRBY来实现。

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25

这个,随便负载到哪个机确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以方式单点故障的问题。

另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。
2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。
2)需要编码和配置的工作量比较大。

4.Twitter的snowflake算法

snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。具体实现的代码可以参看https://github.com/twitter/snowflake

package com.easygo.utils;import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;/*** <p>名称:IdWorker.java</p>* <p>描述:分布式自增长ID</p>* <pre>*     Twitter的 Snowflake JAVA实现方案* </pre>* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。* <p>* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))** @author Polim*/
public class IdWorker {// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)private final static long twepoch = 1288834974657L;// 机器标识位数private final static long workerIdBits = 5L;// 数据中心标识位数private final static long datacenterIdBits = 5L;// 机器ID最大值private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);// 数据中心ID最大值private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);// 毫秒内自增位private final static long sequenceBits = 12L;// 机器ID偏左移12位private final static long workerIdShift = sequenceBits;// 数据中心ID左移17位private final static long datacenterIdShift = sequenceBits + workerIdBits;// 时间毫秒左移22位private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private final static long sequenceMask = -1L ^ (-1L << sequenceBits);/* 上次生产id时间戳 */private static long lastTimestamp = -1L;// 0,并发控制private long sequence = 0L;private final long workerId;// 数据标识id部分private final long datacenterId;public IdWorker(){this.datacenterId = getDatacenterId(maxDatacenterId);this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);}/*** @param workerId*            工作机器ID* @param datacenterId*            序列号*/public IdWorker(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}/*** 获取下一个ID** @return*/public synchronized long nextId() {long timestamp = timeGen();if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {// 当前毫秒内,则+1sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {// 当前毫秒内计数满了,则等待下一秒timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0L;}lastTimestamp = timestamp;// ID偏移组合生成最终的ID,并返回IDlong nextId = ((timestamp - twepoch) << timestampLeftShift)| (datacenterId << datacenterIdShift)| (workerId << workerIdShift) | sequence;return nextId;}private long tilNextMillis(final long lastTimestamp) {long timestamp = this.timeGen();while (timestamp <= lastTimestamp) {timestamp = this.timeGen();}return timestamp;}private long timeGen() {return System.currentTimeMillis();}/*** <p>* 获取 maxWorkerId* </p>*/protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {StringBuffer mpid = new StringBuffer();mpid.append(datacenterId);String name = ManagementFactory.getRuntimeMXBean().getName();if (!name.isEmpty()) {/** GET jvmPid*/mpid.append(name.split("@")[0]);}/** MAC + PID 的 hashcode 获取16个低位*/return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);}/*** <p>* 数据标识id部分* </p>*/protected static long getDatacenterId(long maxDatacenterId) {long id = 0L;try {InetAddress ip = InetAddress.getLocalHost();NetworkInterface network = NetworkInterface.getByInetAddress(ip);if (network == null) {id = 1L;} else {byte[] mac = network.getHardwareAddress();id = ((0x000000FF & (long) mac[mac.length - 1])| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;id = id % (maxDatacenterId + 1);}} catch (Exception e) {System.out.println(" getDatacenterId: " + e.getMessage());}return id;}public static void main(String[] args) {for (int i = 0; i <1000; i++) {try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}IdWorker worker=new IdWorker(0, i);long num = worker.nextId();System.out.println(num);}}
}

snowflake算法可以根据自身项目的需要进行一定的修改。比如估算未来的数据中心个数,每个数据中心的机器数以及统一毫秒可以能的并发数来调整在算法中所需要的bit数。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。
2)ID按照时间在单机上是递增的。

缺点:

1)在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

5.利用zookeeper生成唯一ID

zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。

很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。

https://blog.csdn.net/wuliu_forever/article/details/53389483

6.MongoDB的ObjectId

MongoDB的ObjectId和snowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB 从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

其格式如下:
在这里插入图片描述
前4 个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5 个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId 大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4 个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId 获取这个信息。
接下来的3 字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。
为了确保在同一台机器上并发的多个进程产生的ObjectId 是唯一的,接下来的两字节来自产生ObjectId 的进程标识符(PID)。
前9 字节保证了同一秒钟不同机器不同进程产生的ObjectId 是唯一的。后3 字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId 也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId。

实现的源码可以到MongoDB官方网站下载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_73410.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DCL单例模式是如何保证数据安全的?

承接上文证明CPU指令是乱序执行的DCL单例&#xff08;Double Check Lock&#xff09;到底需不需要volatile&#xff1f;new对象这一步&#xff0c;对应着汇编层面的这3个指令&#xff0c;指令0是申请空间&#xff0c;设置默认值&#xff1b;指令7是执行构造方法&#xff0c;设置…

计算机网络概述 第二部分

5.网络分层 ①OSI 7层模型 数据链路层 (Data Link Layer) 实现相邻&#xff08;Neighboring&#xff09;网络实体间的数据传输 成帧&#xff08;Framing&#xff09;&#xff1a;从物理层的比特流中提取出完整的帧 错误检测与纠正&#xff1a;为提供可靠数据通信提供可能 …

stm32f407探索者开发板(二十一)——窗口看门狗

文章目录一、窗口看门狗概述1.1 看门狗框图1.2 窗口看门狗工作过程总结1.3 超时时间1.4 为什么需要窗口看门狗1.5 其他注意事项二、常用寄存器和库函数2.1 控制寄存器WWDG_ CR2.2 配置寄存器WWDG_ CFR2.3 状态寄存器WWDG_SR三、手写窗口看门狗3.1 配置过程3.2 初始化窗口看门狗…

【微信小程序】-- 常用视图容器类组件介绍(六)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#…

LeetCode 725. 分隔链表

LeetCode 725. 分隔链表 难度&#xff1a;middle\color{orange}{middle}middle 题目描述 给你一个头结点为 headheadhead 的单链表和一个整数 kkk &#xff0c;请你设计一个算法将链表分隔为 kkk 个连续的部分。 每部分的长度应该尽可能的相等&#xff1a;任意两部分的长度差…

绿通科技在创业板开启申购:超额募资约19亿元,收入依赖贴牌

2月23日&#xff0c;广东绿通新能源电动车科技股份有限公司&#xff08;下称“绿通科技”&#xff0c;SZ:301322&#xff09;开启申购。据贝多财经了解&#xff0c;绿通科技本次上市的发行价为131.11元/股&#xff0c;发行数量为1749万股&#xff0c;市盈率73.75倍。 按发行价…

逆向 x品会 edata

逆向 x品会 edata 版本 7.88.6 帖子底部有参考说明 charles 抓包 目标字段 edata edata 搜索关键字 跟进找到是edata >>> KeyInfo native esNav 方法 private static native String esNav(Context context, String str, String str2, String str3, int i); …

XX项目自动化测试方案模板,你学会了吗?

目录 1、引言 2、自动化实施目标 3、自动化技术选型 4、测试环境需求 5、人员进度安排 总结感谢每一个认真阅读我文章的人&#xff01;&#xff01;&#xff01; 重点&#xff1a;配套学习资料和视频教学 1、引言 文档版本 版本 作者 审批 备注 V1.0 Vincent XXX …

不会前端没事,用GWT Boot和Spring Boot构建Web程序

本文介绍了一种使用Java构建Web应用程序的方式&#xff0c;其中GWT或者J2CL是必不可少的&#xff0c;另外还有多个UI框架可以配套使用&#xff0c;比如Domino UI、VueGWT、GWT Material Design (GMD)&#xff0c;React4J、WebFX&#xff0c;还有一些活跃低的框架GWTBootstrap3、…

【解决报错】‘jupyter‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件

在当前路径下使用cmd打开后&#xff0c;输入jupyter notebook出现如下错误&#xff1a; 通常可能出现的问题有两种&#xff1a; &#xff08;1&#xff09;你本身就没安装jupyter&#xff0c;如果你配置了anaconda&#xff0c;就自带jupyter&#xff0c;直接跳到问题2。如果确…

Apache Commons FileUpload Apache Tomcat拒绝服务漏洞解决方案

近日&#xff0c;安全狗应急响应中心关注到Apache官方发布安全公告&#xff0c;披露在Apache Commons FileUpload&#xff1c;1.5版本中存在一处拒绝服务漏洞&#xff08;CVE-2023-24998&#xff09;。Commons FileUpload是Apache组织提供的免费的上传组件。由于Apache Commons…

面向对象的一点小想法

接口里的方法可以写也可以不写 如果写的话&#xff0c;那么得是默认方法&#xff0c;需要在前面加个default 对于默认方法&#xff0c;能够重写&#xff0c;或者直接继承&#xff08;也就是直接用&#xff09; 比如下面&#xff1a; 就直接调用了接口的默认函数nibuhao&#…

R统计绘图-NMDS、环境因子拟合(线性和非线性)、多元统计(adonis2和ANOSIM)及绘图(双因素自定义图例)

这个推文也在电脑里待了快一年了&#xff0c;拖延症患者&#xff0c;今天终于把它发出来了。NMDS分析过程已经R统计-PCA/PCoA/db-RDA/NMDS/CA/CCA/DCA等排序分析教程中写过了。最近又重新看了《Numerical Ecology with R》一书,巩固一下知识&#xff0c;正好重新整理了一下发出…

Nacos源码启动

一、下载源码 为保证速度&#xff0c;国内推荐使用gitee&#xff1a;https://gitee.com/mirrors/Nacos.git 二、导入IDE中 参考之前文章配置国内Maven私服&#xff0c;快速更新工程。 三、启动过程&#xff0c;各种问题 找到启动入口&#xff1a; 先直接启动测试下&#xff…

oscp渗透测试认证该从哪里学起

当我决定要考OSCP时就马上打开浏览器&#xff0c;试图一下弄清楚课程内容和通过考试的方法&#xff0c;我不断的将指南和资源添加到书签中。渐渐的书签里存了许多资料&#xff0c;以至于我不知道从哪里开始学&#xff0c;学习命令吗&#xff1f;我学习编码吗&#xff1f;我使用…

北京/东莞/广州/深圳2023年上半年软考(中/高级)报名>>>

软考是全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;项目&#xff0c;是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试&#xff0c;既属于国家职业资格考试&#xff0c;又是职称资格考试。 系统集成…

扩展学习之时间戳趣谈

目录 一、介绍 二、转换工具 三、获取Unix时间戳的指令 四、普通时间转Unix时间戳 五、扩展 一、介绍 时间戳&#xff1a;一份数据在特定时间点存在的可验证的数据。 Unix时间戳&#xff08;英文为Unix epoch, Unix time, POSIX time 或 Unix timestamp&#xff09;&…

valgrind 移植到arm64 平台上总结

valgrind 介绍valgrind是查找内存泄漏的神器&#xff0c;你可以自动的检测许多内存管理和线程的bug&#xff0c;避免花费太多的时间在bug寻找上&#xff0c;使得你的程序更加稳固。 下载地址&#xff1a;https://valgrind.org/downloads/ 本人下载的是valgrind-3.19.0valgrind编…

.Net与程序集

一个简单的C#程序回想一下我们第一个.net 程序 hello world&#xff0c;它具有那些步骤呢&#xff1f;打开visual studio创建一个C# console的项目build运行程序这时候就有一个命令行窗口弹出来&#xff0c;上面打印着hello world。我们打开文件夹的bin目录&#xff0c;会发现里…

百度前端一面高频react面试题指南

React 高阶组件、Render props、hooks 有什么区别&#xff0c;为什么要不断迭代 这三者是目前react解决代码复用的主要方式&#xff1a; 高阶组件&#xff08;HOC&#xff09;是 React 中用于复用组件逻辑的一种高级技巧。HOC 自身不是 React API 的一部分&#xff0c;它是一…