电容的参数-详细描述

news/2024/5/10 1:28:03/文章来源:https://blog.csdn.net/LUOHUATINGYUSHENG/article/details/129132558

贴片电容

如同如所示,MLCC(Multi-layer Ceramic Capacitors),外形很好区分。
在这里插入图片描述

实际内部结构

在这里插入图片描述
使用的还是平行板电容器原理,只是这个是叠层结构;电解电容是卷起来的圆柱状;

容值:

叠层电容范围:0.00001UF到100UF;一般是这么大,具体的看每个厂家设计。

尺寸/封装:

0402,0603,0805,1206,1210,1810,1812,2010,2512,2220
上面标注的尺寸是所有的贴片电容封装尺寸,对于常见的消费类电子产品,其实正常或者常见的封装

尺寸如下几种:
0402,0603,0805,1206,为什么呢,为了便于携带,电子产品越来越小型化,而对应的PCB板以及PCBA板确实是寸土寸金,所以一般用到前面几种,最常用的也就是0402、0603、0805,所以在选择时,不要想当然,说你要多少容量的什么封装的,毕竟封装和容值在电容封装规范里面是有规定的
(比如说,你要一个0402封装的电容,还非要是100uf,对于瓷片电容来说,那就是异想天开了)。

如下图:为封装尺寸说明,英尺对应的mm(注意inch和mm之间的差异)
在这里插入图片描述
注意:0603inch和0603mm之间的差异。

电容的精度:

这个指的是容值的误差,一般容值越小,精度会越高一点。
电容的精度,容量越小,精度相对来讲越高。(比如你要求10pF的电容),给你精度20%,你试试,10pF的立马缩水成8pF,显然不行的。特别是对于CPU晶振的负载电容,要求精度高,不然会产生频偏问题。(还有射频电路相关的电路应用上,在此不多说)。
在这里插入图片描述

电容的耐压值:

常见的耐压值如上图,且这个耐压值是厂商定的,一般的实际正常耐压值要大于这个值。就像你用20V的电压加在10V耐压电容上,其实电容也不一定会很快坏掉。但是比如电容耐压是10V,那么工作在5V和7.2V的电路里面,电容实际容值是存在差异的。
在这里插入图片描述

电容的厚度/高度:

各厂商可能不一致,厚度会影响消费类电子的体积大小,就像你要把手机做薄一些,你用很厚的电容当然不行,根据产品类型,只能选择薄、小封装的电容。
也是值得注意的一点,在有些产品类型里面,电容高度及排布有时也会影响到自然冷却时的空气自然对流风路。
在这里插入图片描述

电容封装引线;

在这里插入图片描述
如上图为电容封装引脚引线,有银的、铜的或者电镀的,便宜和贵明眼人一下就看的出。但是哪种类型的,取决于对于可靠性的要求。这个材质会影响电容的寄生参数,在高频下还是影响比较大的。

注意封装耐压和容量的关系;

这个很好理解,就是容量做大,必须要体积大或者电容平行极板的距离小;但是距离小了,耐压值其实就不能做到很大,就是存在制约关系。
且实际的生产工艺也不允许,MLCC是由一层一层压制而成的,一定体积下容纳的层数也是一定的,太近的话,容量可以,但是耐压值不够。
在这里插入图片描述

温度对电容的影响

温度特性

按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成两类:
I类超稳定级 – 为C0G或NP0 (注意是零不是哦),对应国标CC系列。
II类稳定级的 – 为X7R或X5R;II类能用级的介质材料Y5V、Z5U,对应国标CT。

I类电容

1.温度补偿特性的单片陶瓷电容器(介电常数为几百)
EIA(美国电子工业协会)标准采用“字母+数字+字母” 这种代码形式来表示Ⅰ类陶瓷温度系数,如C0G,注意中间是“零”,大家常见写成COG;NP0(Negative-Positive-Zero)IEC(国际电工委员会)标准;

C0G(C 表示电容温度系数的有效数字为 0 ppm/℃;0 表示有效数字的倍乘因数为 -1(即10的0次方);G 表示随温度变化的容差为 ±30ppm)。
其他的组合只是不常见,但是具体可以根据下图来自行计算:
在这里插入图片描述
依据上表计算下来,C0G电容最终的TCC为:0×(-1)ppm/℃±30ppm/℃。而相应的其他Ⅰ类陶瓷的温度系数,例如U2J电容,计算下来则为:-750 ppm/℃±120 ppm/℃。

在这里插入图片描述
如上图所示及该材质电容的特性:温度特性平稳,容值小,价格高,常用于谐振回路。
这类电容容量大多数在1000pF以下,该类电容的主要低功耗性能指标是损耗角正切值tanφ(DF值),常见的该种电容的精度一般在10%以及以下:
在这里插入图片描述
NP0是一种最常用的具有温度补偿特性的单片陶瓷电容器,它的填充介质是由铷、钐和一些其它稀有氧化物组成的;在温度从-55℃到 125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。
所以这些常见的用在是射频电路里面:WIFI模块及外围电路;BT电路模组及外围电路;GPS模组及外围电路等射频调制电路。因为这些模块较容易发热,温度升高,容量变化较大会影响电路性能,所以使用温度补偿型电容,在一定温度范围内,容值稳定,电性能基本不变。

II类电容

1.温度稳定型的陶瓷电容器(稳定级)
X7R温度范围:-55–125℃
X5R温度范围:-55–85℃
介电常数大,容量比较高,容量变化受温度影响。常用于电源滤波等;
区别主要还在于温度范围和容值随温度的变化特性上。下表提示了这些代号的含义。
在这里插入图片描述
以X7R为例(X 代表电容最低可工作在 -55℃;7 代表电容最高可工作在 +125℃;R 代表容值随温度的变化为 ±15%)

同样的,Y5V正常工作温度范围在-30℃~+85℃, 对应的电容容量变化为+22~-82%;而Z5U 正常工作温度范围在+10℃~+85℃,对应的电容容量变化为+22~-56%。
容值在1000pF以上,该类电容在低功耗时主要性能是等效串联电阻ESR,X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化
而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。

2.温度限制的通用电容器(可用型)
Y5V
温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达22%到-82%。
便宜精度不高的电路,低成本的。
Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器
Z5U
在10-85℃的范围内,电容的容量变化范围可以达到22%到-56%。
温度特性大、容值大、成本低。
尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。
如下为几种常见的电容容值随着温度变化曲线:
在这里插入图片描述

以上描述电容,一般建议使用的温度范围;
在这里插入图片描述

电容的实际模型

在这里插入图片描述
常用模型
电容器的等效串联电阻是由电容器的引脚电阻与电容器两个极板的等效电阻相串联构成的。电容器的等效串联电感是由电容器的引脚电感与电容器两个极板的等效电感串联构成的。

TDK官方有相关的电压耐压曲线、阻抗曲线等,可以关注下;
https://product.tdk.com/info/en/technicalsupport/seat/download.html
附带一份规格书:
http://fenghua.com/pdf/mlcc/MLCC-Y5V.pdf

资料来自于互联网,不用于商业用途。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_71826.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu22.04设置独显用于深度学习运算,核显用于屏幕显示

目录摘要主板bios设置第一步:切换prime-select第二步:关机重启,并将显示器接口插到主板上第三步:设置PRIME Profiles为NVIDIA On-Demand模式注意事项参考文献摘要 目前有需求配置台式机win11Ubuntu的双系统,安装双系统…

linux线程的基本知识

这里用的是Linux的pthread线程库,需要加pthread线程库。 线程的创建 第一个参数是线程id的地址。第二个参数是线程属性,一般为NULL。第三个是要执行的函数。第四个是函数的参数,一般也为NULL 线程的等待,第一个参数是线程的id,第…

SpringBoot之DEBUG远程调试黑科技?

所谓的远程调试就是服务端程序运行在一台远程服务器上,我们可以在本地服务端的代码(前提是本地 的代码必须和远程服务器运行的代码一致)中设置断点,每当有请求到远程服务器时时能够在本地知道 远程服务端的此时的内部状态。 简单的…

10.现代循环神经网络

10.现代循环神经网络 目录 门控循环单元(GRU)门控隐状态 重置门和更新门候选隐状态 隐状态从零开始实现 初始化模型参数定义模型训练与预测 简洁实现总结 长短期记忆网络(LSTM) 门控记忆元 输入门、忘记门和输出门候选记忆元记忆…

论文复现:模拟风电不确定性——拉丁超立方抽样生成及缩减场景(Matlab)

风电出力的不确定性主要源于预测误差,而研究表明预测误差(e)服从正态分布且大概为预测出力的10%。本代码采用拉丁超立方抽样实现场景生成[1,2]、基于概率距离的快速前代消除法实现场景缩减[3],以此模拟了风电出力的不确定性。 1 …

蓝桥杯刷题025——推导部分和(加权并查集)

2022省赛 问题描述 对于一个长度为 N 的整数数列 ​, 小蓝想知道下标 l 到 r 的部 分和是多少? 然而, 小蓝并不知道数列中每个数的值是多少, 他只知道它的 M 个部分和 的值。其中第 i 个部分和是下标 ​ 到 的部分和 , 值是 。 输入格式 第一行包含 3 个整数 N、M 和 Q 。分…

基于DSP+FPGA的机载雷达伺服控制系统的硬件设计与开发

机载雷达是以飞机为载体的各种雷达天线的总称,主要用于空中侦察、警戒、保 证航行准确与安全[1]。随着航空航天技术的飞速发展,以及微电子、计算机和高速集 成电路等新型技术在军事领域的广泛应用[2],各国都研制出了许多新型战机和导弹,机 载…

企业微信的聊天机器人来了,免费下载(Python版)

大家好,这里是程序员晚枫,个人网址:python-office.com 上次分享了微信机器人的视频以后,视频下面有一个热门评论: 什么时候开发企业版微信机器人?自动回复、自动群发等等~ 在经历了一段时间的查找和开发以…

【基础算法】之 冒泡排序优化

冒泡排序思想基本思想: 冒泡排序,类似于水中冒泡,较大的数沉下去,较小的数慢慢冒起来(假设从小到大),即为较大的数慢慢往后排,较小的数慢慢往前排。直观表达,每一趟遍历,…

Docker----------day3

常规安装大体步骤 1.安装tomcat 1.查找tomcat docker search tomcat2.拉取tomcat docker pull tomcat3.docker images查看是否有拉取到的tomcat 4.使用tomcat镜像创建容器实例(也叫运行镜像) docker run -it -p 8080:8080 tomcat5.新版tomcat把webapps.dist目录换成webapp…

【大数据离线开发】7.4 HBase数据保存和过滤器

7.4 数据保存的过程 注意:数据的存储,都需要注意Region的分裂 HDFS:数据的平衡 ——> 数据的移动(拷贝)HBase:数据越来越多 ——> Region的分裂 ——> 数据的移动(拷贝) …

清理bib文件(删除重复项,仅保留tex中引用的条目)

在写latex文件的过程中,经常会遇到添加了一堆文献的bibtex到bib文件中,有时候文章一长同一篇文献用不同的cite-key引用了多次,同时也会有一些文献最后并没被正文引用,这就需要对bib文件进行清理。 删除重复项 可以用JabRef 在J…

经理与员工工资关系-课后程序(JAVA基础案例教程-黑马程序员编著-第四章-课后作业)

【案例4-6】经理与员工工资案例(利用多态实现) 欢迎点赞关注收藏 【案例介绍】 案例描述 某公司的人员分为员工和经理两种,但经理也属于员工中的一种,公司的人员都有自己的姓名和地址,员工和经理都有自己的工号、工…

不同投票需要的不同上传方式outlook 投票功能怎么设置投票 html5

“艺空间手造坊”网络评选投_投票方式的选择_免费图文教学投票教学关于微信投票,我们现在用的最多的就是小程序投票,今天的网络投票,在这里会教大家如何用“活动星投票”小程序来进行投票。我们现在要以“艺空间手造坊”为主题进行一次投票活…

AcWing1015.摘花生

AcWing 1015. 摘花生Hello Kitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它…

Java并发知识点

文章目录1. start()和run()方法的区别?2. volatile关键字的作用?使用volatile能够保证:防止指令重排3. sleep方法和wait方法有什么区别?sleep()方法4. 如何停止一个正在运行的线程?方法一:方法二&#xff1…

多重继承的虚函数表

同一个类,不同对象使用同一张虚函数表 不同类使用不同的虚函数表 子类自己添加的虚函数(非重写),在VS中是将此放在第一个继承类的虚函数表里. #include <iostream> using namespace std;class Father { public:virtual void func1() { cout << "Father::f…

<Linux>vscode搭建Linux远程开发工具

一、下载vscode&#x1f603;可以去vscode的官网下载&#xff0c;不过是外网下载速度较慢提速可以参考&#xff1a;(81条消息) 解决VsCode下载慢问题_vscode下载太慢_wang13679201813的博客-CSDN博客官网&#xff1a;Visual Studio Code - Code Editing. Redefined这里推荐的是…

【数据结构】二叉树的四种遍历

写在前面首先二叉树是一个大家族&#xff0c;这篇文章就讲一讲二叉树的遍历&#xff1a;递归遍历迭代遍历先识概念二叉树的存储结构&#xff0c;可以为顺序存储&#xff0c;即使用数组&#xff1b;也可以为链式存储&#xff0c;即使用链表。我们使用较多的就是链式存储结构&…

Ceres的自动求导实现原理剖析

目录数学原理实现原理总结首先注意数值求导和自动求导在使用的时候的不同之处。 实际上&#xff0c;正是自动求导这个地方使用了类模板&#xff0c;导致它不仅可以传入参数&#xff0c;还可以传入Jet类型的数据&#xff0c;从而实现了参数的雅可比矩阵的计算&#xff0c;完成自…