数字图像处理matlab上机实验 (五)

2020/7/6 22:07:27 人评论 次浏览 分类:学习教程

前言:作为一名图像算法攻城狮,那是在2014年大三下学期,一本深绿色的《数字图像处理》(冈萨雷斯的英文版)出现在自己课桌前。偶然间打开的一扇意外之门,就这样结下了一段不解之缘,那些日子不断上网搜代码的自己,那个刚上机不到二十分钟就把作业提交的自己,早已随往日的岁月飘扬而去。三年的烟酒僧,两年的酱油工,而今只觉脑子越来越不够用,这次决心回炉重造,希望能够通过固本培基,打开思路,话不多说,开始上课!
----2020-7-6


实验 5 图像频域增强

一、实验目的
通过本实验使学生掌握使用MATLAB的二维傅里叶变换进行频域增强的方法。
二、实验原理
本实验是基于数字图像处理课程中的图像频域增强理论来设计的。
本实验的准备知识:第四章 频域图像增强中的一维傅里叶变换和二维傅里叶变换,频域图像增强的步骤,频域滤波器。根据教材285页到320页的内容,开展本实验。
可能用到的函数:

1、 延拓函数 padarray
例:A=[1,2;3,4];
B=padarray(A,[2,3],’post’);
则结果为
B =
1 2 0 0 0
3 4 0 0 0
0 0 0 0 0
0 0 0 0 0
使用该函数实现图像的0延拓。Padarray还有其它用法,请用help查询。

2 、低通滤波器生成函数
首先编写dftuv函数,如下
function [U,V]=dftuv(M,N)
%DFTUV Computes meshgrid frequency matrices.
% [U,V]=DFTUV(M,N] computes meshgrid frequency matrices U and V. U
and V are useful for computing frequency-domain filter functions that
can be used with DFTFILT. U and V are both M-by-N.

% Set up range of variables.
u=0:(M-1);
v=0:(N-1);
% Compute the indices for use in meshgrid.
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
%Compute the meshgrid arrays.
[V,U]=meshgrid(v,u);
然后编写低通滤波器函数
function [H,D]=lpfilter(type,M,N,D0,n)
% LPFILTER computers frequency domain lowpass filters.
% H=lpfilter(TYPE,M,N,D0,n) creates the transfer function of a lowpass
filter, H, of the specified TYPE and size(M-by-N). To view the filter as
an image or mesh plot, it should be centered using H=fftshift(H).
% valid values for TYPE, D0, and n are:
% ‘ideal’ Ideal lowpass filter with cutoff frequency D0. n need not
be supplied. D0 must be positive.
% ‘btw’ Butterworth lowpass filter of ordern, and cutoff D0. The
default value for n is 1. D0 must be positive.
% ‘gaussian’ Gaussian lowpass filter with cutoff (standard deviation)D0.
n need not be supplied. D0 must be positive.
%Use function dftuv to set up the meshgrid arrays needed for computing
the required distances.
[U,V]=dftuv(M,N); %
D=sqrt(U.2+V.2); % Compute the distances D(U,V)
% Begin filter computations.
switch type
case ‘ideal’
H=double(D<=D0);
case ‘btw’
if nargin==4
n=1;
end
H=1./(1+(D./D0).^(2*n));
case ‘gaussian’
H=exp(-(D.2)./(2*(D02)));
otherwise
error(‘Unknown filter type’)
end
通过调用函数lpfilter可生成相应的滤波器掩膜矩阵。
参考该函数可相应的生成高通滤波器函数。

3、 频域滤波
F=fft2(f,size(H,1),size(H,2)); % 对延拓的 f 计算 FFT。注意,这里隐含着对 f 的延拓。
G=real(ifft2(H.*F)); % 滤波
Gf=G(1:size(f,1),1:size(f,2)); %裁剪后的图像

三、实验内容
(一)图像频域增强的步骤
参考教材286页的Figure 4.36,重复该图像中的步骤,并将相应的结果显示出来。

(二)频域低通滤波
产生实验四中的白条图像。设计不同截止频率的理想低通滤波器、Butterworth低通滤
波器,对其进行频域增强。观察频域滤波效果,并解释之。

程序1:

I=zeros(64,64);
I(32-20:32+20,32-8:32+8)=255;
subplot(1,2,1)
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                          
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);  
      h=1*exp(-1/2*(d^2/d0^2));  
       s(i,j)=h*s(i,j);                     
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                            
imshow(s)
 

在这里插入图片描述

程序2:

I=zeros(64,64);
I(32-20:32+20,32-8:32+8)=255;
subplot(1,2,1)
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                          
n2=floor(N/2);
d0=50;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);    
      h=1*exp(-1/2*(d^2/d0^2)); 
       s(i,j)=h*s(i,j);                   
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                              
imshow(s);

在这里插入图片描述

程序3:

I=zeros(64,64);
I(32-20:32+20,32-8:32+8)=255;
subplot(1,2,1)
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                        
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N   
 d=sqrt((i-n1)^2+(j-n2)^2);
         
 h=1/(1+0.414*(d/d0)^(2*n1));  
          
       s(i,j)=h*s(i,j);                     
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                          
imshow(s);

在这里插入图片描述

设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。

程序1:

clear all;  
A=imread('F:\Images\lena.bmp');
subplot(1,3,1),imshow(A,[]);
title('原图')
B=imnoise(A,'gauss',0.02);
subplot(1,3,2),imshow(B,[]);
title('添加高斯噪声后的图像')
f=double(B);
g=fft2(f);
g=fftshift(g);
[N1,N2]=size(g); 
n=2; 
d0=50; 
n1=fix(N1/2); 
n2=fix(N2/2); 
for i=1:N1   
   for j=1:N2  
        d=sqrt((i-n1)^2+(j-n2)^2);
        c=double(d<=d0);  
        result(i,j)=c*g(i,j); 
        
   end 
end  
resul=ifftshift(result);
X2=ifft2(result);
X3=uint8(real(X2));
subplot(1,3,3),imshow(X3);
title('D0=50,低通滤波器')

在这里插入图片描述

程序2:
Butterworth低通滤波器程序:

clc,clear,close all;
I=imread('F:\Images\lena.bmp');  %原图为灰度图像
II=imnoise(I,'gauss',0.02);
I1=medfilt2(II,[3,3]);
subplot(1,3,1)
imshow(I,[]);%把图像显示出来
subplot(1,3,2)
imshow(I1,[]); 

f=double(I1); %图像存储类型转换
g=fft2(f); %傅立叶变换
g=fftshift(g); %转换数据矩阵
 
[N1,N2]=size(g); %测量图像尺寸参数
n=2; 
d0=50; 
n1=fix(N1/2); 
n2=fix(N2/2); 

for i=1:N1    
   for j=1:N2  
     d=sqrt((i-n1)^2+(j-n2)^2);
     h=1/(1+0.414*(d/d0)^(2*n));%计算Butterworth低通转换函数
     result(i,j)=h*g(i,j); 
   end 
end  
result=ifftshift(result); 
X2=ifft2(result); 
X3=uint8(real(X2));  

subplot(1,3,3)
imshow(X3)%显示频域增强后的图像

在这里插入图片描述

(三) 频域高通滤波
设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。

程序1:

I=zeros(64,64);
I(32-20:32+20,32-8:32+8)=255;
subplot(1,2,1);
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                         
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);
        h=1-(1*exp(-1/2*(d^2/d0^2)));    
        s(i,j)=h*s(i,j);                  
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                             
imshow(s);

在这里插入图片描述

程序2:

I=zeros(64,64);
I(32-20:32+20,32-8:32+8)=255;
subplot(1,2,1);
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                          
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);   
        h=1-(1/(1+0.414*(d/d0)^(2*n)));  
        s(i,j)=h*s(i,j);                   
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                           
imshow(s)

在这里插入图片描述

设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。

程序1:

I1=imread('F:\Images\lena.bmp');
I=imnoise(I1, 'gauss', 0.02);
subplot(1,2,1);
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                      
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);
         h=1-(1*exp(-1/2*(d^2/d0^2))); 
       s(i,j)=h*s(i,j);                     
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                            
imshow(s);

在这里插入图片描述

程序2:

I1=imread('F:\Images\lena.bmp');
I=imnoise(I1, 'gauss', 0.02);
subplot(1,2,1);
imshow(I);
s=fftshift(fft2(I));
[M,N]=size(s);
n1=floor(M/2);                      
n2=floor(N/2);
d0=5;
for i=1:M      
    for j=1:N    
        d=sqrt((i-n1)^2+(j-n2)^2);     
        h=1-(1/(1+0.414*(d/d0)^(2*n)));     
        s(i,j)=h*s(i,j);                    
    end 
end  
s=ifftshift(s);                           
s=uint8(real(ifft2(s)));   
subplot(1,2,2);                          
imshow(s);

在这里插入图片描述

**四、实验方法与步骤
1、顺序完成上述实验内容
2、按照实验内容要求,分析编程,将程序和实验结果整理成word文档,分析结果,编写实验报告。

五、实验报告要求
1、本实验由学生单人独立完成。
2、每个实验均按统一格式编写实验报告。
实验报告内容包括:实验要求,实验项目,典型程序流程图,程序清单,数据结果和分析讨论。
**

上一篇:linux内核之源码编译

下一篇:Vue03

相关资讯

    暂无相关的资讯...

共有访客发表了评论 网友评论

验证码: 看不清楚?
    -->