【毕业设计】深度学习车辆颜色识别检测系统 - python opencv YOLOv5

news/2024/5/2 5:57:54/文章来源:https://blog.csdn.net/caxiou/article/details/128092482

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 5 数据集处理及模型训练
  • 6 最后


1 前言

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

①==>40×40×255②==>20×20×255③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

5 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_38840.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ATJ2157ATJ2127音乐按文件名拼音排序---标案是按内码进行排序

音乐按文件名拼音进行排序参考网站ATJ2157&ATJ2127 排序是按照内码(汉字为GBK即GBK936)排序的按拼音排序unicode与拼音的对比表(U2P.DAT),需要打包到固件中U2P.DAT数据结构U2P.DAT生成代码是使用DEV-C生成其他说明U2P.DAT与ATJ2127平台代码参考网站 各种字符对…

activiti-api

activiti-api目录概述需求:设计思路实现思路分析1.VariableEvent2.EmptyResult3.BPMNElement4.BPMNError5.ConnectorAbstractSecurityManager参考资料和推荐阅读Survive by day and develop by night. talk for import biz , show your perfect code,full busy&…

Mac下安装Hadoop

1、引言 如果想在Mac下安装Hadoop而且让Hadoop能正常运行,那安装之前需要先安装java,在Mac环境下安装Hadoop。 2、配置ssh环境 在Mac下如果想使用Hadoop,必须要配置ssh环境, 如果不执行这一步,后面启动hadoop时会出现…

PyCharm+PyQT5之三界面与逻辑的分离

之二的例程已经实现了界面与逻辑的分离,所建立的 Dialog Mainwindow 或者 widgets 等,界面改变其主调程序(暂且这样叫)更改,或者不需要大规模更改, 主调函数的程序是这样的 import sys import FistUI from PyQt5.QtWidgets import QApplication, QMainWindow,QDialog if __nam…

解决 Android WebView 多进程导致App崩溃

应用场景 应用内有两个位置用到WebView加载页面,具体处理逻辑不能通用。分别扩展了WebView了。应用内独立页面使用Fragment来展示,(采用单Activity架构)。应用提供切换语言功能。 问题猜想 一、WebView内核bug 具体路径: 进入app–>设…

cmake使用

1. cmake概述及例子 CMake快速入门 cmake、qmake、cl之间关系 1.1 各种cmake cmake根据CMakeLists.txt生成makefile,make根据makefile行编译。 1.1.1 最简cmake:生成可执行程序(一个文件) #CMakeLists.txt cmake_minimum_req…

debug - JLX12864C(ST7920-12864)液晶屏不能使用串行通讯的原因

文章目录debug - JLX12864C(ST7920-12864)液晶屏不能使用串行通讯的原因概述调试备注ENDdebug - JLX12864C(ST7920-12864)液晶屏不能使用串行通讯的原因 概述 正在给板子写出厂测试程序, 买的12864型号是JLX12864C. STC官方给的例程是并行通讯, 好使. 但是想在测试程序中改为…

[附源码]计算机毕业设计springboot基于Java的日用品在线电商平台

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM mybatis Maven Vue 等等组成,B/S模式 M…

mybatis的xml中<trim>标签的用法

文章目录1. 前言2. 先说结论3. 验证1. 情况一2. 情况二3. 情况三4. 情况四5. 验证prefixOverrides去掉的是trim内原sql内容1. 前言 在工作中离不开跟数据库打交道,目前流行的固然是mybatis,在xml中写sql的时候,可能会出现下面情况&#xff1a…

CAS:1516551-46-4,BCN-琥珀酰亚胺酯,BCN-NHS点击试剂供应

一:产品描述 1、名称: BCN-NHS BCN-活性酯 BCN-NHS 酯 丙烷环辛炔-活性酯 BCN-琥珀酰亚胺酯 BCN-succinimidylester 2、CAS编号:1516551-46-4 3、质量控制:95% 4、分子量:291.30 5、分子式:C15H…

Windows本地安装Redis且设置服务自启

redis中文网:http://redis.cn/ 如果是安装Windows版的redis需要去GitHub上下载安装包 如果是在Linux上安装,可以直接使用命令进行安装 本次教程是基于Windows系统进行的 GitHub地址:https://github.com/microsoftarchive/redis 选择需要下…

基于神经网络彩色图像插值研究-附Matlab程序

⭕⭕ 目 录 ⭕⭕✳️ 一、引言✳️ 二、色彩过滤阵列CFA✳️ 三、BP网络结构✳️ 四、神经网络彩色图像插值实验验证✳️ 五、参考文献✳️ 六、Matlab程序获取与验证✳️ 一、引言 彩色图像插值是通过估算相邻像素来估计缺失的颜色分量的过程,数字相机通过色彩过滤…

[附源码]Python计算机毕业设计Django大学生创新项目管理系统

项目运行 环境配置: Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术: django python Vue 等等组成,B/S模式 pychram管理等等。 环境需要 1.运行环境:最好是python3.7.7,…

你知道吗?小程序组件≠小程序插件

一直以为小程序组件和小程序插件是一回事,只是措辞不一样,导致造成乌龙,其实完全是两回事,插件是可以直接提供服务的,组件是给开发者提供的轮子,不能直接提供服务。 先看看微信是如何定义小程序插件的&…

Quartz深度实战

概述 Java语言中最正统的任务调度框架,几乎是首选。后来和Spring Schedule平分秋色;再后来会被一些轻量级的分布式任务调度平台,如XXL-Job取代。另外近几年Quartz的维护和发布几乎停滞,但这并不意味着Quartz被淘汰,还…

【SVM时序预测】基于matlab鲸鱼算法优化支持向量机SVM时序数据预测【含Matlab源码 2250期】

⛄一、鲸鱼算法优化支持向量机SVM 1 鲸鱼优化算法 WOA是由Mirjalili和Lewis在2016年提出的一种较为新颖的元启发式群体智能优化算法,该算法模仿座头鲸的“螺旋气泡网”捕食策略,如图1所示。 图1 座头鲸“螺旋起泡网”捕食策略 WOA算法寻优步骤如下。 步…

【在线研讨会】12月12日Softing工业物联网解决方案 助力工业4.0

本次研讨会设有抽奖环节,并有精美礼品相送! 一 会议介绍 水平和垂直通信一体化是工业4.0背后的核心原则之一,实现这一点需要标准化通信接口,这些接口能够促进各种组件的相互连接并传输同步数据流。本次研讨会将提供解决方案将过程…

《联邦学习实战—杨强》之使用Python从零开始实现一个简单的横向联邦学习模型

文章目录前言环境准备完整代码配置文件(conf.json)获取数据集(datasets.py)获取PyTorch中自带深度学习网络预训练模型(models.py)客户端(client.py)服务端(server.py)main.py运行知识点补充argparse基本用法tensor.copy_()[Python dict() 函数](https://www.runoob.com/python/…

域自适应——Bidirectional Learning for Domain Adaptation of Semantic Segmentation

论文题目:Bidirectional Learning for Domain Adaptation of Semantic Segmentation 本文的域位移是针对虚拟数据和真实数据之间的。 本文的贡献是: 提出了一种语义分割的双向学习系统 ,其是一个学习分割适应模型和图像翻译模型的闭环学习系…

nVisual部署之nginx配置说明

Nginx 是一个高性能的HTTP和反向代理web服务器,因此nvisual在部署前端包时便采用了它作为服务器,版本使用1.14.1以上。在默认的配置下,还需要向nginx各模块添加配置才能达到生产需要。 接下来,从http模块开始,再到ser…