【数据结构】二叉树——链式结构

news/2024/4/26 15:46:40/文章来源:https://blog.csdn.net/m0_57388581/article/details/131668492

目录

 一、前置声明

二、二叉树的遍历

2.1 前序、中序以及后序遍历

2.2 层序遍历

三、节点个数以及高度

3.1 节点个数

3.2 叶子节点个数

3.3 第k层节点个数

3.4 二叉树的高度/深度

3.5 查找值为x的节点

四、二叉树的创建和销毁

4.1 构建二叉树

4.2 二叉树销毁

4.3 判断二叉树是否为完全二叉树 


该努力的时候不要选择安逸!


 一、前置声明

二叉树是: 1. 空树 2. 非空:根节点,根节点的左子树、根节点的右子树组成的。
二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

  

普通二叉树的增删查改是没有价值的,如果是为了单纯的存储数据,不如使用线性表。

二、二叉树的遍历

遍历方法:前序遍历、中序遍历、后序遍历和层序遍历

(1)先序遍历(也叫作先根遍历):(根、左子树、右子树)上图:首先遍历1(根),然后遍历1的左子树2,接着遍历2的左子树3,然后比遍历3的左子树NULL,然后3的右子树NULL;然后遍历2的右子树NULL;在接着遍历1的右子树4,然后遍历4的左子树5,再然后遍历5的左子树NULL,然后5的右子树NULL;接着遍历4的右子树6,最后遍历6的左子树NULL,然后6的右子树。即1->2->3->NULL->NULL->NULL->4->5->NULL->NULL->6->NULL->NULL  【颜色依次是根、左子树、右子树】

(2)中序遍历(中根遍历):(左子树、根节点、右子树)即:对于3来说,NULL->3->NULL,对于2来说NULL->3->NULL->2->NULL;对于1来说,NULL->3->NULL->2->NULL->1->NULL->5->NULL->4->NULL->6->NULL   【想访问1,就要先访问1的左子树2,想访问2,就要先访问2的左子树3,想访问3,就要先访问3的左子树NULL】

(3)后序遍历(后根遍历):(左子树、右子树、根子树):即:NULL->NULL->3->NULL->2->NULL->NULL->5->NULL->NULL>6->4->1

(4)层序遍历(一层一层的)(不需要递归):即:1->2->4->3->5->6

2.1 前序、中序以及后序遍历

  二叉树遍历 (Traversal) 是按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次。

前序/中序/后序的递归结构遍历

1.前序遍历 (Preorder Traversal 亦称先序遍历 )—— 访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历 (Inorder Traversal)—— 访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历 (Postorder Traversal)—— 访问根结点的操作发生在遍历其左右子树之后。
前序遍历结果: 1 2 3 4 5 6

中序遍历结果: 3 2 1 5 4 6
后序遍历结果: 3 2 5 6 4 1

代码:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>typedef int BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;BTDataType data;
}BTNode;BTNode* BuyBTNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){printf("malloc fail\n");exit(-1);}node->left = node->right = NULL;node->data = x;return node;
}BTNode* CreatBinaryTree()
{BTNode* node1 = BuyBTNode(1);BTNode* node2 = BuyBTNode(2);BTNode* node3 = BuyBTNode(3);BTNode* node4 = BuyBTNode(4);BTNode* node5 = BuyBTNode(5);BTNode* node6 = BuyBTNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}
//根 左 右
void PrevOrder(BTNode* root)
{if (root == NULL){return;}printf("%d ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}int main()
{BTNode* tree = CreatBinaryTree();PrevOrder(tree);//前printf("\n");InOrder(tree);//中序printf("\n");PostOrder(tree);//后序printf("\n");return 0;
}

2.2 层序遍历

    除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);//首先把根进入到队列里面,if (root != NULL){QueuePush(&q, root);}//判断队列是否为空,while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ", front->data);//出数据的同时,伴随着进数据if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}printf("\n");QueueDestory(&q);
}

思想:(1)先把根入队列,借助队列先入先出的性质(2)节点出的时候,把下一层非空的节点进入到队列里面。一边进,一边出。

深度优先遍历(DFS):前序遍历、中序遍历、后序遍历;

广度优先遍历(BFS):层序遍历

前置声明:如果想使用一个结构体,但是这个结构体在后面定义,就可以使用前置声明(和函数声明一样)struct BinaryTreeNode;

三、节点个数以及高度

3.1 节点个数

思想:遍历+计数

代码1: 

//前序遍历
int count = 0;
void BTreeSize(BTNode* root)
{if (root == NULL){return;}count++;BTreeSize(root->left);BTreeSize(root->right);
}
int main()
{BTNode* tree = CreatBinaryTree();count = 0;BTreeSize(tree);printf("Size = %d", count);printf("\n");count = 0;BTreeSize(tree);printf("Size = %d", count);
}

我们比较容易想到的思路是,把遍历二叉树的printf改成 count++;但是,我们要在每一个栈帧里都创建一个count吗?所以我们可以定义一个全局变量count(代码1),但是这个会有多路线程安全问题。所以最佳的方法是增加一个指针。(代码2)

代码2:

void BTreeSize(BTNode* root,int* pcount)
{if (root == NULL){return;}(*pcount)++;BTreeSize(root->left, pcount);BTreeSize(root->right, pcount);
}
int main()
{BTNode* tree = CreatBinaryTree();int count = 0;BTreeSize(tree, &count);printf("Size = %d", count);return 0;
}

 代码3:

int BTreeSize(BTNode* root)
{return root == NULL ? 0 : (BTreeSize(root->left) + BTreeSize(root->right) + 1);
}

分治:把复杂的问题,分成更小规模的子问题,子问题再分成更小规模的问题,直到子问题不可再分割,直接能出结果

思路:子问题(1)空树,最小规模子问题,节点个数返回0,(2)非空,左子树节点个数+右子树节点个数+1【自己】【代码3】

:如果想知道,这个节点的树多少个节点,首先必须知道左子树和右子树的节点个数,然后再加上自己。当这个节点是NULL的时候,返回0即可。

3.2 叶子节点个数

代码1

void BTreeLeafSize(BTNode* root, int* pcount)
{if (root == NULL){return;}if ((root->left == NULL) && (root->right == NULL)){(*pcount)++;}BTreeLeafSize(root->left, pcount);BTreeLeafSize(root->right, pcount);
}
int main()
{int count = 0;BTreeLeafSize(tree, &count);printf("%d\n", count);return 0;
}

思路1:遍历+计数【代码1】

代码2

int BTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->right == NULL && root->left == NULL){return 1;}return BTreeLeafSize(root->right) + BTreeLeafSize(root->left);
}
int main()
{BTreeLeafSize(tree);printf("%d\n", BTreeLeafSize(tree));return 0;
}

思路2:分治【代码2】

数的叶子节点等于左子树的叶子节点+右子树的叶子节点。一直分到这个小树的根的节点不等于NULL,但是左右子树为NULL。

3.3 第k层节点个数

int BTreeKLevelSize(BTNode* root, int k)
{assert(k >= 1);if (root == NULL){return 0;}if (k == 1){return 1;}return  BTreeKLevelSize(root->left, k - 1) + BTreeKLevelSize(root->right, k - 1);
}

分治思想:(1)空树,返回0(2)非空,且k==1,返回1(3)非空且K>1,装换成左子树K-1层节点个数+右子树k-1层节点个数。

即:【首先,求第k层节点个数,首先这一层看成满的,如果有节点就返回1,如果没有节点就返回0】其次(1)如果求的是第一层的节点个数,那就直接是1,(2)如果求的是第二层的节点个数,那么可以转化成求左子树的第一层节点个数+右子树的第一层节点个数(3)如果求的是根的第三层的节点个数,那么可以转化成求该根左子树的第二层节点个数+右子树的第二层节点个数,再转化成该根的左子树的左子树的第一层节点个数+该根左子树的右子树的第一层节点个数+根的右子树的左子树的第一层节点个数+该根右子树的右子树的第一层节点个数【第一层(1)空树,返回0(2)k==1,返回1】

3.4 二叉树的高度/深度

int BTreeDepth(BTNode* root)
{if (root == NULL){return 0;}return  BTreeDepth(root->left) > BTreeDepth(root->right) ? (BTreeDepth(root->left) + 1) : (BTreeDepth(root->right) + 1);
}

分治思想:左子树和右子树高度较大的那一个+1.

3.5 查找值为x的节点

BTNode* BTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}BTNode* ret1 = BTreeFind(root->left, x);if (ret1){return ret1;}BTNode* ret2 = BTreeFind(root->right, x);if (ret2){return ret2;}return NULL;
}

分治思想:【如果左子树找到了,那么右子树就不需要再进行查找】

找到了指针,就可以对其进行改变值 

四、二叉树的创建和销毁

4.1 构建二叉树

链接:牛客

代码:

#include <stdio.h>
#include <stdlib.h>
typedef struct BinaryTreeNode
{char data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;
//先构建一个二叉树【前序遍历】BTNode* CreatTree(char* a, int* pi){if (a[*pi] == '#'){(*pi)++;return NULL;}//先构建根BTNode* root = (BTNode*)malloc(sizeof(BTNode));root->data = a[*pi];(*pi)++;//再构建左子树和右子树root->left = CreatTree(a, pi);root->right = CreatTree(a, pi);return root;}void InOrder(BTNode* root)
{if (root == NULL){return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);
}int main()
{char a[100];scanf("%s", a);int i = 0;BTNode* tree = CreatTree(a, &i);InOrder(tree);free(tree);tree = NULL;return 0;
}

思想:先序遍历的思想的字符串,建立二叉树【遇到'#',就返回NULL】,然后再中序遍历的思想进行打印。

4.2 二叉树销毁

void BTreeDestory(BTNode* root)
{if (root == NULL){return;}BTreeDestory(root->left);BTreeDestory(root->right);free(root);
}
int main()
{BTNode* tree = CreatBinaryTree();BTreeDestory(tree);//想改变谁的内容,就需要把谁的地址传递给函数。free(tree);tree = NULL;return 0;
}

(1)后序遍历(2)一级指针,tree需要在函数外面进行销毁。(3)如果传递的是二级指针,就可以在函数内进行销毁。

4.3 判断二叉树是否为完全二叉树

bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);if (front == NULL){break;}QueuePop(&q);QueuePush(&q, root->left);//不管是还是不是NULL,都进入队列QueuePush(&q, root->right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);if (front != NULL){QueueDestory(&q);return false;}QueuePop(&q);}QueueDestory(&q);return true;
}

思想:层序遍历的思想;一个节点出队列的时候,会把该节点下一层的节点入队列(把NULL也进入队列),完全二叉树,层序遍历完之后,就不会出现NULL。如果不是完全二叉树,就会出现NULL。

思路:(1)层序遍历,空节点也可以进队列(2)出到空节点以后,出队列中所有数据,如果全是NULL,就是完全二叉树,如果有非空,就不是完全二叉树。

注意:返回数据之前,要把队列给销毁【否则会出现内存泄漏】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_331107.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Javaweb的三大组件:servlet、filter、listener

1.前言 Servlet翻译过来是小服务程序&#xff0c;所以呢&#xff0c;在javaweb中Servlet是用来处理客户端请求的动态资源&#xff0c;一般表示小程序&#xff0c;在实际开发javaweb的过程中使用的比较多一些&#xff0c;通常的使用方法是根据具体的业务需求来继承HttpServlet&a…

Rdkit|分子3D构象生成与优化

github; 地址 文章目录 Rdkit|分子3D构象生成与优化构象生成算法概述基于距离&#xff08;distance-based&#xff09;代码示例 距离几何算法生成3D结构距离几何ETKDG生成3D构象距离几何ETKDG生成多构象将Conformer类转为Mol类手动对齐 距离几何ETKDGMMFF生成3D构象距离几何ETK…

Node.js 版本管理工具 n 使用指南

Node.js 版本更新很快&#xff0c;目前 node v20.x 已经发布&#xff0c;我们在使用时避免不了会需要切换不同的 Node.js 的版本来使用不同版本的特性。 所以就出现了像 windows 上的 nvm&#xff0c;MacOS 上的 n 工具&#xff0c;本文就介绍一下如何使用 n 管理 Node.js 的版…

InsCode Stable Diffusion使用教程【InsCode Stable Diffusion美图活动一期】

记录一下如何使用 InsCode Stable Diffusion 进行 AI 绘图以及使用感受。 一、背景介绍 目前市面上比较权威&#xff0c;并能用于工作中的 AI 绘画软件其实就两款。一个叫 Midjourney&#xff08;简称 MJ&#xff09;&#xff0c;另一个叫 Stable Diffusion&#xff08;简称 …

FPGA——按键控制led灯

文章目录 一、实验环境二、实验任务三、系统设计四、实验过程4.1 编写verilog代码4.2 引脚配置 五、仿真5.1 仿真代码5.2 仿真结果 六、实验结果七、总结 一、实验环境 quartus 18.1 modelsim vscode Cyclone IV开发板 二、实验任务 使用开发板上的四个按键控制四个LED灯。按…

【微信小程序创作之路】- 小程序窗口整体配置(导航栏、标题)

【微信小程序创作之路】- 小程序窗口导航栏配置 第五章 微信小程序窗口导航栏配置 文章目录 【微信小程序创作之路】- 小程序窗口导航栏配置前言一、入口文件的配置二、页面配置三、全局默认窗口配置1.navigationBarTitleText&#xff1a;导航栏标题文字2.navigationBarBackgr…

​​Layui之用户管理实例(对数据的增删改查)

目录 ​编辑一、R工具介绍&#xff08;&#xff09; ​编辑二、数据表的增删改查 ​编辑2.1我们先得从查询数据库的语句入手 2.2优化dao类 2.4UserAction类 2.5前台的页面实现增删改查操作 2.6 userManage页面JS 2.7user新增、修改iframe层js 前言 上一篇我分享了…

SpringCloudAlibaba:消息驱动之RocketMQ学习

目录 一、MQ简介 &#xff08;一&#xff09;什么是MQ &#xff08;二&#xff09;MQ的应用场景 1、异步解耦 2、流量削峰 &#xff08;三&#xff09;常见的MQ产品 二、RocketMQ入门 &#xff08;一&#xff09;RocketMQ安装部署 1、环境要求 2、下载RocketMQ 3、安…

nginx的前端集成

对于springcloud项目&#xff0c;后端我们有很多的微服务&#xff0c;当然前端我们也可以有很多的小项目进行集成 前端项目部署思路 通过nginx来进行配置&#xff0c;功能如下 通过nginx的反向代理功能访问后台的网关资源 通过nginx的静态服务器功能访问前端静态页面 配置ng…

CSS3绘制3D银行卡片层叠展示特效

使用纯css3绘制3D银行卡层叠展示特效 具体示例如下 <template><div><div class"tariffCards"><div class"economy"><img src"../images/css-article-imgs/example-css3D-card/tarcs.png" alt"中信银行" he…

图腾柱电路

驱动MOS或者IGBT管&#xff0c;需要比较大的驱动电流或者灌电流 使用图腾柱电路或许是一个好的办法 电流路径是这样的 当CTL1端口输出为高电平的时候 三极管Q2的2脚为高&#xff0c;三极管Q2不导通 三极管Q1的2脚为高&#xff0c;三极管导通 所以Q1的3脚和1脚导通 VCC--…

Linux线程的生产者消费者模型 --- 阻塞队列(blockqueue)

文章目录 线程同步条件变量条件变量的接口 生产者消费者场景消费者和消费者的关系生产者和生产者的关系生产者和消费者的关系从何体现出效率的提高 Blockqueueblockqueue.hpp为什么条件变量的接口有锁作为参数 CP.cc生产者 -> queue -> 消费者兼生产者 -> queue ->…

【HarmonyOS】Stage模型二维码/条码生成与解析

HarmonyOS的官方API中提供了QRCode组件&#xff08;QRCode-基础组件-组件参考&#xff08;基于ArkTS的声明式开发范式&#xff09;-ArkTS API参考-HarmonyOS应用开发&#xff09;&#xff0c;这个组件有个缺点只能用于显示二维码&#xff0c;无法显示条码与解析码内容&#xff…

【已解决】Flask项目报错TypeError: tuple indices must be integers or slices, not str

文章目录 问题情境报错及分析报错代码分析 解决方案必要的解决方法可能有用的解决方法 问题情境 本解决方案适用情境&#xff1a;在本地可以正常运行的flask项目&#xff0c;放到云服务器报错TypeError: tuple indices must be integers or slices, not str&#xff0c;即代码…

《深度学习推荐系统》笔记

目录 一、推荐系统是什么1.作用和意义2.推荐系统的架构2.1 逻辑架构2.2 技术架构 二、传统的推荐系统方法1. 协同过滤算法1.1 userCF&&ItemCF1.3 矩阵分解算法 2. 逻辑回归算法3. 因子分解机3.1 POLY2模型3.2 FM模型3.3 FFM模型3.4 小结 4. 组合模型4.1 GBDTLR组合模型…

【C++/嵌入式笔试面试八股】二、24.TCP三次握手四次挥手 | TCP可靠性

TCP三次握手四次挥手 64.TCP头部中有哪些信息?❤️ TCP数据报格式(左图) UDP数据报格式也放这(右图),不具体解释了。 结合三次握手四次挥手来看 端口: 区分应用层的不同应用进程 扩展:应用程序的端口号和应用程序所在主机的 IP 地址统称为 socket(套接字),IP:端口…

Docker安装ElasticSearch/ES

目录 前言准备拉取ElasticSearch镜像安装ElasticSearch拉取elasticsearch-head镜像安装elasticsearch-head参考 前言 TencentOS Server 3.1Docker version 19.03.14, build 5eb3275d40 准备 docker 已安装。 安装 docker 参考&#xff1a;【Centos 8】【Centos 7】安装 docke…

基于STM32 ARM+FPGA伺服控制系统总体设计方案(一)

设计需求 一套完整的伺服控制方案包括了上位机、驱控一体控制器和功率板三者。操作人员 通过上位机发送各种不同指令&#xff0c;然后控制器解析指令后执行相应的伺服功能&#xff0c;其次控 制器将驱动信号传输至功率板驱动电机&#xff0c;最后控制器采集反馈信息进行闭环…

了解PostgreSQL sql shell和VACUUM命令

从SQL Shell进入PostgreSQL&#xff1b;没用过这东西&#xff0c;看一下&#xff1b; 一直回车&#xff1b;最后输入口令就登入了&#xff1b;此时是登入默认的数据库postgres&#xff1b;这个数据库是默认安装的&#xff1b; 看一下有没有表&#xff0c;根据资料可以用 \d 或…

大坝安全监测中需要做好检查监测

大坝安全监测是人们了解大坝运行状态和安全状况的有效手段和方法。它的目的主要是了解大坝安全状况及其发展态势&#xff0c;是一个包括由获取各种环境、水文、结构、安全信息到经过识别、计算、判断等步骤&#xff0c;最终给出一个大坝安全 程度的全过程。 此过程包括&#xf…