百度前端二面常考面试题

news/2024/5/18 11:55:48/文章来源:https://blog.csdn.net/loveX001/article/details/128200656

HTTP分层

  • 第一层:物理层,TCP/IP 里无对应;
  • 第二层:数据链路层,对应 TCP/IP 的链接层;
  • 第三层:网络层,对应 TCP/IP 的网际层;
  • 第四层:传输层,对应 TCP/IP 的传输层;
  • 第五、六、七层:统一对应到 TCP/IP 的应用层

总结

  • TCP/IP 分为四层,核心是二层的 IP 和三层的 TCPHTTP 在第四层;
  • OSI 分为七层,基本对应 TCP/IPTCP 在第四层,HTTP 在第七层;
  • OSI 可以映射到 TCP/IP,但这期间一、五、六层消失了;
  • 日常交流的时候我们通常使用 OSI 模型,用四层、七层等术语;
  • HTTP 利用 TCP/IP协议栈逐层打包再拆包,实现了数据传输,但下面的细节并不可见

有一个辨别四层和七层比较好的(但不是绝对的)小窍门,“两个凡是”:凡是由操作系统负责处理的就是四层或四层以下,否则,凡是需要由应用程序(也就是你自己写代码)负责处理的就是七层

什么是 XSS 攻击?

(1)概念

XSS 攻击指的是跨站脚本攻击,是一种代码注入攻击。攻击者通过在网站注入恶意脚本,使之在用户的浏览器上运行,从而盗取用户的信息如 cookie 等。

XSS 的本质是因为网站没有对恶意代码进行过滤,与正常的代码混合在一起了,浏览器没有办法分辨哪些脚本是可信的,从而导致了恶意代码的执行。

攻击者可以通过这种攻击方式可以进行以下操作:

  • 获取页面的数据,如DOM、cookie、localStorage;
  • DOS攻击,发送合理请求,占用服务器资源,从而使用户无法访问服务器;
  • 破坏页面结构;
  • 流量劫持(将链接指向某网站);

(2)攻击类型

XSS 可以分为存储型、反射型和 DOM 型:

  • 存储型指的是恶意脚本会存储在目标服务器上,当浏览器请求数据时,脚本从服务器传回并执行。
  • 反射型指的是攻击者诱导用户访问一个带有恶意代码的 URL 后,服务器端接收数据后处理,然后把带有恶意代码的数据发送到浏览器端,浏览器端解析这段带有 XSS 代码的数据后当做脚本执行,最终完成 XSS 攻击。
  • DOM 型指的通过修改页面的 DOM 节点形成的 XSS。

1)存储型 XSS 的攻击步骤:

  1. 攻击者将恶意代码提交到⽬标⽹站的数据库中。
  2. ⽤户打开⽬标⽹站时,⽹站服务端将恶意代码从数据库取出,拼接在 HTML 中返回给浏览器。
  3. ⽤户浏览器接收到响应后解析执⾏,混在其中的恶意代码也被执⾏。
  4. 恶意代码窃取⽤户数据并发送到攻击者的⽹站,或者冒充⽤户的⾏为,调⽤⽬标⽹站接⼝执⾏攻击者指定的操作。

这种攻击常⻅于带有⽤户保存数据的⽹站功能,如论坛发帖、商品评论、⽤户私信等。

2)反射型 XSS 的攻击步骤:

  1. 攻击者构造出特殊的 URL,其中包含恶意代码。
  2. ⽤户打开带有恶意代码的 URL 时,⽹站服务端将恶意代码从 URL 中取出,拼接在 HTML 中返回给浏览器。
  3. ⽤户浏览器接收到响应后解析执⾏,混在其中的恶意代码也被执⾏。
  4. 恶意代码窃取⽤户数据并发送到攻击者的⽹站,或者冒充⽤户的⾏为,调⽤⽬标⽹站接⼝执⾏攻击者指定的操作。

反射型 XSS 跟存储型 XSS 的区别是:存储型 XSS 的恶意代码存在数据库⾥,反射型 XSS 的恶意代码存在 URL ⾥。

反射型 XSS 漏洞常⻅于通过 URL 传递参数的功能,如⽹站搜索、跳转等。 由于需要⽤户主动打开恶意的 URL 才能⽣效,攻击者往往会结合多种⼿段诱导⽤户点击。

3)DOM 型 XSS 的攻击步骤:

  1. 攻击者构造出特殊的 URL,其中包含恶意代码。
  2. ⽤户打开带有恶意代码的 URL。
  3. ⽤户浏览器接收到响应后解析执⾏,前端 JavaScript 取出 URL 中的恶意代码并执⾏。
  4. 恶意代码窃取⽤户数据并发送到攻击者的⽹站,或者冒充⽤户的⾏为,调⽤⽬标⽹站接⼝执⾏攻击者指定的操作。

DOM 型 XSS 跟前两种 XSS 的区别:DOM 型 XSS 攻击中,取出和执⾏恶意代码由浏览器端完成,属于前端JavaScript ⾃身的安全漏洞,⽽其他两种 XSS 都属于服务端的安全漏洞。

手写 bind、apply、call

// callFunction.prototype.call = function (context, ...args) {context = context || window;const fnSymbol = Symbol("fn");context[fnSymbol] = this;context[fnSymbol](...args);delete context[fnSymbol];
}
// applyFunction.prototype.apply = function (context, argsArr) {context = context || window;const fnSymbol = Symbol("fn");context[fnSymbol] = this;context[fnSymbol](...argsArr);delete context[fnSymbol];
}
// bindFunction.prototype.bind = function (context, ...args) {context = context || window;const fnSymbol = Symbol("fn");context[fnSymbol] = this;return function (..._args) {args = args.concat(_args);context[fnSymbol](...args);delete context[fnSymbol];   }
}

首屏和白屏时间如何计算

首屏时间的计算,可以由 Native WebView 提供的类似 onload 的方法实现,在 ios 下对应的是 webViewDidFinishLoad,在 android 下对应的是onPageFinished事件。

白屏的定义有多种。可以认为“没有任何内容”是白屏,可以认为“网络或服务异常”是白屏,可以认为“数据加载中”是白屏,可以认为“图片加载不出来”是白屏。场景不同,白屏的计算方式就不相同。

方法1:当页面的元素数小于x时,则认为页面白屏。比如“没有任何内容”,可以获取页面的DOM节点数,判断DOM节点数少于某个阈值X,则认为白屏。 方法2:当页面出现业务定义的错误码时,则认为是白屏。比如“网络或服务异常”。 方法3:当页面出现业务定义的特征值时,则认为是白屏。比如“数据加载中”。

介绍下 promise 的特性、优缺点,内部是如何实现的,动手实现 Promise

1)Promise基本特性

  • 1、Promise有三种状态:pending(进行中)、fulfilled(已成功)、rejected(已失败)
  • 2、Promise对象接受一个回调函数作为参数, 该回调函数接受两个参数,分别是成功时的回调resolve和失败时的回调reject;另外resolve的参数除了正常值以外, 还可能是一个Promise对象的实例;reject的参数通常是一个Error对象的实例。
  • 3、then方法返回一个新的Promise实例,并接收两个参数onResolved(fulfilled状态的回调);onRejected(rejected状态的回调,该参数可选)
  • 4、catch方法返回一个新的Promise实例
  • 5、finally方法不管Promise状态如何都会执行,该方法的回调函数不接受任何参数
  • 6、Promise.all()方法将多个多个Promise实例,包装成一个新的Promise实例,该方法接受一个由Promise对象组成的数组作为参数(Promise.all()方法的参数可以不是数组,但必须具有Iterator接口,且返回的每个成员都是Promise实例),注意参数中只要有一个实例触发catch方法,都会触发Promise.all()方法返回的新的实例的catch方法,如果参数中的某个实例本身调用了catch方法,将不会触发Promise.all()方法返回的新实例的catch方法
  • 7、Promise.race()方法的参数与Promise.all方法一样,参数中的实例只要有一个率先改变状态就会将该实例的状态传给Promise.race()方法,并将返回值作为Promise.race()方法产生的Promise实例的返回值
  • 8、Promise.resolve()将现有对象转为Promise对象,如果该方法的参数为一个Promise对象,Promise.resolve()将不做任何处理;如果参数thenable对象(即具有then方法),Promise.resolve()将该对象转为Promise对象并立即执行then方法;如果参数是一个原始值,或者是一个不具有then方法的对象,则Promise.resolve方法返回一个新的Promise对象,状态为fulfilled,其参数将会作为then方法中onResolved回调函数的参数,如果Promise.resolve方法不带参数,会直接返回一个fulfilled状态的 Promise 对象。需要注意的是,立即resolve()的 Promise 对象,是在本轮“事件循环”(event loop)的结束时执行,而不是在下一轮“事件循环”的开始时。
  • 9、Promise.reject()同样返回一个新的Promise对象,状态为rejected,无论传入任何参数都将作为reject()的参数

2)Promise优点

  • ①统一异步 API
    • Promise 的一个重要优点是它将逐渐被用作浏览器的异步 API ,统一现在各种各样的 API ,以及不兼容的模式和手法。
  • ②Promise 与事件对比
    • 和事件相比较, Promise 更适合处理一次性的结果。在结果计算出来之前或之后注册回调函数都是可以的,都可以拿到正确的值。 Promise 的这个优点很自然。但是,不能使用 Promise 处理多次触发的事件。链式处理是 Promise 的又一优点,但是事件却不能这样链式处理。
  • ③Promise 与回调对比
    • 解决了回调地狱的问题,将异步操作以同步操作的流程表达出来。
  • ④Promise 带来的额外好处是包含了更好的错误处理方式(包含了异常处理),并且写起来很轻松(因为可以重用一些同步的工具,比如 Array.prototype.map() )。

3)Promise缺点

  • 1、无法取消Promise,一旦新建它就会立即执行,无法中途取消。
  • 2、如果不设置回调函数,Promise内部抛出的错误,不会反应到外部。
  • 3、当处于Pending状态时,无法得知目前进展到哪一个阶段(刚刚开始还是即将完成)。
  • 4、Promise 真正执行回调的时候,定义 Promise 那部分实际上已经走完了,所以 Promise 的报错堆栈上下文不太友好。

4)简单代码实现
最简单的Promise实现有7个主要属性, state(状态), value(成功返回值), reason(错误信息), resolve方法, reject方法, then方法

class Promise{constructor(executor) {this.state = 'pending';this.value = undefined;this.reason = undefined;let resolve = value => {if (this.state === 'pending') {this.state = 'fulfilled';this.value = value;}};let reject = reason => {if (this.state === 'pending') {this.state = 'rejected';this.reason = reason;}};try {// 立即执行函数executor(resolve, reject);} catch (err) {reject(err);}}then(onFulfilled, onRejected) {if (this.state === 'fulfilled') {let x = onFulfilled(this.value);};if (this.state === 'rejected') {let x = onRejected(this.reason);};}
}

5)面试够用版

function myPromise(constructor){ let self=this;self.status="pending" //定义状态改变前的初始状态 self.value=undefined;//定义状态为resolved的时候的状态 self.reason=undefined;//定义状态为rejected的时候的状态 function resolve(value){//两个==="pending",保证了了状态的改变是不不可逆的 if(self.status==="pending"){self.value=value;self.status="resolved"; }}function reject(reason){//两个==="pending",保证了了状态的改变是不不可逆的if(self.status==="pending"){self.reason=reason;self.status="rejected"; }}//捕获构造异常 try{constructor(resolve,reject);}catch(e){reject(e);} 
}
myPromise.prototype.then=function(onFullfilled,onRejected){ let self=this;switch(self.status){case "resolved": onFullfilled(self.value); break;case "rejected": onRejected(self.reason); break;default: }
}// 测试
var p=new myPromise(function(resolve,reject){resolve(1)}); 
p.then(function(x){console.log(x)})
//输出1

6)大厂专供版

const PENDING = "pending"; 
const FULFILLED = "fulfilled"; 
const REJECTED = "rejected";
const resolvePromise = (promise, x, resolve, reject) => {if (x === promise) {// If promise and x refer to the same object, reject promise with a TypeError as the reason.reject(new TypeError('循环引用'))}// if x is an object or function,if (x !== null && typeof x === 'object' || typeof x === 'function') {// If both resolvePromise and rejectPromise are called, or multiple calls to the same argument are made, the first call takes precedence, and any further calls are ignored.let calledtry { // If retrieving the property x.then results in a thrown exception e, reject promise with e as the reason.let then = x.then // Let then be x.then// If then is a function, call it with x as thisif (typeof then === 'function') {// If/when resolvePromise is called with a value y, run [[Resolve]](promise, y)// If/when rejectPromise is called with a reason r, reject promise with r.then.call(x, y => {if (called) returncalled = trueresolvePromise(promise, y, resolve, reject)}, r => {if (called) returncalled = truereject(r)})} else {// If then is not a function, fulfill promise with x.resolve(x)}} catch (e) {if (called) returncalled = truereject(e)}} else {// If x is not an object or function, fulfill promise with xresolve(x)}
}
function Promise(excutor) {let that = this; // 缓存当前promise实例例对象that.status = PENDING; // 初始状态that.value = undefined; // fulfilled状态时 返回的信息that.reason = undefined; // rejected状态时 拒绝的原因 that.onFulfilledCallbacks = []; // 存储fulfilled状态对应的onFulfilled函数that.onRejectedCallbacks = []; // 存储rejected状态对应的onRejected函数function resolve(value) { // value成功态时接收的终值if(value instanceof Promise) {return value.then(resolve, reject);}// 实践中要确保 onFulfilled 和 onRejected ⽅方法异步执⾏行行,且应该在 then ⽅方法被调⽤用的那⼀一轮事件循环之后的新执⾏行行栈中执⾏行行。setTimeout(() => {// 调⽤用resolve 回调对应onFulfilled函数if (that.status === PENDING) {// 只能由pending状态 => fulfilled状态 (避免调⽤用多次resolve reject)that.status = FULFILLED;that.value = value;that.onFulfilledCallbacks.forEach(cb => cb(that.value));}});}function reject(reason) { // reason失败态时接收的拒因setTimeout(() => {// 调⽤用reject 回调对应onRejected函数if (that.status === PENDING) {// 只能由pending状态 => rejected状态 (避免调⽤用多次resolve reject)that.status = REJECTED;that.reason = reason;that.onRejectedCallbacks.forEach(cb => cb(that.reason));}});}// 捕获在excutor执⾏行行器器中抛出的异常// new Promise((resolve, reject) => {//     throw new Error('error in excutor')// })try {excutor(resolve, reject);} catch (e) {reject(e);}
}
Promise.prototype.then = function(onFulfilled, onRejected) {const that = this;let newPromise;// 处理理参数默认值 保证参数后续能够继续执⾏行行onFulfilled = typeof onFulfilled === "function" ? onFulfilled : value => value;onRejected = typeof onRejected === "function" ? onRejected : reason => {throw reason;};if (that.status === FULFILLED) { // 成功态return newPromise = new Promise((resolve, reject) => {setTimeout(() => {try{let x = onFulfilled(that.value);resolvePromise(newPromise, x, resolve, reject); //新的promise resolve 上⼀一个onFulfilled的返回值} catch(e) {reject(e); // 捕获前⾯面onFulfilled中抛出的异常then(onFulfilled, onRejected);}});})}if (that.status === REJECTED) { // 失败态return newPromise = new Promise((resolve, reject) => {setTimeout(() => {try {let x = onRejected(that.reason);resolvePromise(newPromise, x, resolve, reject);} catch(e) {reject(e);}});});}if (that.status === PENDING) { // 等待态
// 当异步调⽤用resolve/rejected时 将onFulfilled/onRejected收集暂存到集合中return newPromise = new Promise((resolve, reject) => {that.onFulfilledCallbacks.push((value) => {try {let x = onFulfilled(value);resolvePromise(newPromise, x, resolve, reject);} catch(e) {reject(e);}});that.onRejectedCallbacks.push((reason) => {try {let x = onRejected(reason);resolvePromise(newPromise, x, resolve, reject);} catch(e) {reject(e);}});});}
};

死锁产生的原因? 如果解决死锁的问题?

所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。

系统中的资源可以分为两类:

  • 可剥夺资源,是指某进程在获得这类资源后,该资源可以再被其他进程或系统剥夺,CPU和主存均属于可剥夺性资源;
  • 不可剥夺资源,当系统把这类资源分配给某进程后,再不能强行收回,只能在进程用完后自行释放,如磁带机、打印机等。

产生死锁的原因:

(1)竞争资源

  • 产生死锁中的竞争资源之一指的是竞争不可剥夺资源(例如:系统中只有一台打印机,可供进程P1使用,假定P1已占用了打印机,若P2继续要求打印机打印将阻塞)
  • 产生死锁中的竞争资源另外一种资源指的是竞争临时资源(临时资源包括硬件中断、信号、消息、缓冲区内的消息等),通常消息通信顺序进行不当,则会产生死锁

(2)进程间推进顺序非法

若P1保持了资源R1,P2保持了资源R2,系统处于不安全状态,因为这两个进程再向前推进,便可能发生死锁。例如,当P1运行到P1:Request(R2)时,将因R2已被P2占用而阻塞;当P2运行到P2:Request(R1)时,也将因R1已被P1占用而阻塞,于是发生进程死锁

产生死锁的必要条件:

  • 互斥条件:进程要求对所分配的资源进行排它性控制,即在一段时间内某资源仅为一进程所占用。
  • 请求和保持条件:当进程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不剥夺条件:进程已获得的资源在未使用完之前,不能剥夺,只能在使用完时由自己释放。
  • 环路等待条件:在发生死锁时,必然存在一个进程——资源的环形链。

预防死锁的方法:

  • 资源一次性分配:一次性分配所有资源,这样就不会再有请求了(破坏请求条件)
  • 只要有一个资源得不到分配,也不给这个进程分配其他的资源(破坏请保持条件)
  • 可剥夺资源:即当某进程获得了部分资源,但得不到其它资源,则释放已占有的资源(破坏不可剥夺条件)
  • 资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)

参考:前端进阶面试题详细解答

选择排序–时间复杂度 n^2

题目描述:实现一个选择排序

实现代码如下:

function selectSort(arr) {// 缓存数组长度const len = arr.length;// 定义 minIndex,缓存当前区间最小值的索引,注意是索引let minIndex;// i 是当前排序区间的起点for (let i = 0; i < len - 1; i++) {// 初始化 minIndex 为当前区间第一个元素minIndex = i;// i、j分别定义当前区间的上下界,i是左边界,j是右边界for (let j = i; j < len; j++) {// 若 j 处的数据项比当前最小值还要小,则更新最小值索引为 jif (arr[j] < arr[minIndex]) {minIndex = j;}}// 如果 minIndex 对应元素不是目前的头部元素,则交换两者if (minIndex !== i) {[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];}}return arr;
}
// console.log(quickSort([3, 6, 2, 4, 1]));

浏览器渲染优化

(1)针对JavaScript: JavaScript既会阻塞HTML的解析,也会阻塞CSS的解析。因此我们可以对JavaScript的加载方式进行改变,来进行优化:

(1)尽量将JavaScript文件放在body的最后

(2) body中间尽量不要写<script>标签

(3)<script>标签的引入资源方式有三种,有一种就是我们常用的直接引入,还有两种就是使用 async 属性和 defer 属性来异步引入,两者都是去异步加载外部的JS文件,不会阻塞DOM的解析(尽量使用异步加载)。三者的区别如下:

  • script 立即停止页面渲染去加载资源文件,当资源加载完毕后立即执行js代码,js代码执行完毕后继续渲染页面;
  • async 是在下载完成之后,立即异步加载,加载好后立即执行,多个带async属性的标签,不能保证加载的顺序;
  • defer 是在下载完成之后,立即异步加载。加载好后,如果 DOM 树还没构建好,则先等 DOM 树解析好再执行;如果DOM树已经准备好,则立即执行。多个带defer属性的标签,按照顺序执行。

(2)针对CSS:使用CSS有三种方式:使用link、@import、内联样式,其中link和@import都是导入外部样式。它们之间的区别:

  • link:浏览器会派发一个新等线程(HTTP线程)去加载资源文件,与此同时GUI渲染线程会继续向下渲染代码
  • @import:GUI渲染线程会暂时停止渲染,去服务器加载资源文件,资源文件没有返回之前不会继续渲染(阻碍浏览器渲染)
  • style:GUI直接渲染

外部样式如果长时间没有加载完毕,浏览器为了用户体验,会使用浏览器会默认样式,确保首次渲染的速度。所以CSS一般写在headr中,让浏览器尽快发送请求去获取css样式。

所以,在开发过程中,导入外部样式使用link,而不用@import。如果css少,尽可能采用内嵌样式,直接写在style标签中。

(3)针对DOM树、CSSOM树: 可以通过以下几种方式来减少渲染的时间:

  • HTML文件的代码层级尽量不要太深
  • 使用语义化的标签,来避免不标准语义化的特殊处理
  • 减少CSSD代码的层级,因为选择器是从左向右进行解析的

(4)减少回流与重绘:

  • 操作DOM时,尽量在低层级的DOM节点进行操作
  • 不要使用table布局, 一个小的改动可能会使整个table进行重新布局
  • 使用CSS的表达式
  • 不要频繁操作元素的样式,对于静态页面,可以修改类名,而不是样式。
  • 使用absolute或者fixed,使元素脱离文档流,这样他们发生变化就不会影响其他元素
  • 避免频繁操作DOM,可以创建一个文档片段documentFragment,在它上面应用所有DOM操作,最后再把它添加到文档中
  • 将元素先设置display: none,操作结束后再把它显示出来。因为在display属性为none的元素上进行的DOM操作不会引发回流和重绘。
  • 将DOM的多个读操作(或者写操作)放在一起,而不是读写操作穿插着写。这得益于浏览器的渲染队列机制

浏览器针对页面的回流与重绘,进行了自身的优化——渲染队列

浏览器会将所有的回流、重绘的操作放在一个队列中,当队列中的操作到了一定的数量或者到了一定的时间间隔,浏览器就会对队列进行批处理。这样就会让多次的回流、重绘变成一次回流重绘。

将多个读操作(或者写操作)放在一起,就会等所有的读操作进入队列之后执行,这样,原本应该是触发多次回流,变成了只触发一次回流。

Vue 为什么要用 vm.$set() 解决对象新增属性不能响应的问题 ?你能说说如下代码的实现原理么?

1)Vue为什么要用vm.$set() 解决对象新增属性不能响应的问题

  1. Vue使用了Object.defineProperty实现双向数据绑定
  2. 在初始化实例时对属性执行 getter/setter 转化
  3. 属性必须在data对象上存在才能让Vue将它转换为响应式的(这也就造成了Vue无法检测到对象属性的添加或删除)

所以Vue提供了Vue.set (object, propertyName, value) / vm.$set (object, propertyName, value)

2)接下来我们看看框架本身是如何实现的呢?

Vue 源码位置:vue/src/core/instance/index.js

export function set (target: Array<any> | Object, key: any, val: any): any {// target 为数组  if (Array.isArray(target) && isValidArrayIndex(key)) {// 修改数组的长度, 避免索引>数组长度导致splcie()执行有误target.length = Math.max(target.length, key)// 利用数组的splice变异方法触发响应式  target.splice(key, 1, val)return val}// key 已经存在,直接修改属性值  if (key in target && !(key in Object.prototype)) {target[key] = valreturn val}const ob = (target: any).__ob__// target 本身就不是响应式数据, 直接赋值if (!ob) {target[key] = valreturn val}// 对属性进行响应式处理defineReactive(ob.value, key, val)ob.dep.notify()return val
}

我们阅读以上源码可知,vm.$set 的实现原理是:

  1. 如果目标是数组,直接使用数组的 splice 方法触发相应式;
  2. 如果目标是对象,会先判读属性是否存在、对象是否是响应式,
  3. 最终如果要对属性进行响应式处理,则是通过调用 defineReactive 方法进行响应式处理

defineReactive 方法就是 Vue 在初始化对象时,给对象属性采用 Object.defineProperty 动态添加 getter 和 setter 的功能所调用的方法

协商缓存和强缓存的区别

(1)强缓存

使用强缓存策略时,如果缓存资源有效,则直接使用缓存资源,不必再向服务器发起请求。

强缓存策略可以通过两种方式来设置,分别是 http 头信息中的 Expires 属性和 Cache-Control 属性。

(1)服务器通过在响应头中添加 Expires 属性,来指定资源的过期时间。在过期时间以内,该资源可以被缓存使用,不必再向服务器发送请求。这个时间是一个绝对时间,它是服务器的时间,因此可能存在这样的问题,就是客户端的时间和服务器端的时间不一致,或者用户可以对客户端时间进行修改的情况,这样就可能会影响缓存命中的结果。

(2)Expires 是 http1.0 中的方式,因为它的一些缺点,在 HTTP 1.1 中提出了一个新的头部属性就是 Cache-Control 属性,它提供了对资源的缓存的更精确的控制。它有很多不同的值,

Cache-Control可设置的字段:

  • public:设置了该字段值的资源表示可以被任何对象(包括:发送请求的客户端、代理服务器等等)缓存。这个字段值不常用,一般还是使用max-age=来精确控制;
  • private:设置了该字段值的资源只能被用户浏览器缓存,不允许任何代理服务器缓存。在实际开发当中,对于一些含有用户信息的HTML,通常都要设置这个字段值,避免代理服务器(CDN)缓存;
  • no-cache:设置了该字段需要先和服务端确认返回的资源是否发生了变化,如果资源未发生变化,则直接使用缓存好的资源;
  • no-store:设置了该字段表示禁止任何缓存,每次都会向服务端发起新的请求,拉取最新的资源;
  • max-age=:设置缓存的最大有效期,单位为秒;
  • s-maxage=:优先级高于max-age=,仅适用于共享缓存(CDN),优先级高于max-age或者Expires头;
  • max-stale[=]:设置了该字段表明客户端愿意接收已经过期的资源,但是不能超过给定的时间限制。

一般来说只需要设置其中一种方式就可以实现强缓存策略,当两种方式一起使用时,Cache-Control 的优先级要高于 Expires。

no-cache和no-store很容易混淆:

  • no-cache 是指先要和服务器确认是否有资源更新,在进行判断。也就是说没有强缓存,但是会有协商缓存;
  • no-store 是指不使用任何缓存,每次请求都直接从服务器获取资源。

(2)协商缓存

如果命中强制缓存,我们无需发起新的请求,直接使用缓存内容,如果没有命中强制缓存,如果设置了协商缓存,这个时候协商缓存就会发挥作用了。

上面已经说到了,命中协商缓存的条件有两个:

  • max-age=xxx 过期了
  • 值为no-store

使用协商缓存策略时,会先向服务器发送一个请求,如果资源没有发生修改,则返回一个 304 状态,让浏览器使用本地的缓存副本。如果资源发生了修改,则返回修改后的资源。

协商缓存也可以通过两种方式来设置,分别是 http 头信息中的EtagLast-Modified属性。

(1)服务器通过在响应头中添加 Last-Modified 属性来指出资源最后一次修改的时间,当浏览器下一次发起请求时,会在请求头中添加一个 If-Modified-Since 的属性,属性值为上一次资源返回时的 Last-Modified 的值。当请求发送到服务器后服务器会通过这个属性来和资源的最后一次的修改时间来进行比较,以此来判断资源是否做了修改。如果资源没有修改,那么返回 304 状态,让客户端使用本地的缓存。如果资源已经被修改了,则返回修改后的资源。使用这种方法有一个缺点,就是 Last-Modified 标注的最后修改时间只能精确到秒级,如果某些文件在1秒钟以内,被修改多次的话,那么文件已将改变了但是 Last-Modified 却没有改变,这样会造成缓存命中的不准确。

(2)因为 Last-Modified 的这种可能发生的不准确性,http 中提供了另外一种方式,那就是 Etag 属性。服务器在返回资源的时候,在头信息中添加了 Etag 属性,这个属性是资源生成的唯一标识符,当资源发生改变的时候,这个值也会发生改变。在下一次资源请求时,浏览器会在请求头中添加一个 If-None-Match 属性,这个属性的值就是上次返回的资源的 Etag 的值。服务接收到请求后会根据这个值来和资源当前的 Etag 的值来进行比较,以此来判断资源是否发生改变,是否需要返回资源。通过这种方式,比 Last-Modified 的方式更加精确。

当 Last-Modified 和 Etag 属性同时出现的时候,Etag 的优先级更高。使用协商缓存的时候,服务器需要考虑负载平衡的问题,因此多个服务器上资源的 Last-Modified 应该保持一致,因为每个服务器上 Etag 的值都不一样,因此在考虑负载平衡时,最好不要设置 Etag 属性。

总结:

强缓存策略和协商缓存策略在缓存命中时都会直接使用本地的缓存副本,区别只在于协商缓存会向服务器发送一次请求。它们缓存不命中时,都会向服务器发送请求来获取资源。在实际的缓存机制中,强缓存策略和协商缓存策略是一起合作使用的。浏览器首先会根据请求的信息判断,强缓存是否命中,如果命中则直接使用资源。如果不命中则根据头信息向服务器发起请求,使用协商缓存,如果协商缓存命中的话,则服务器不返回资源,浏览器直接使用本地资源的副本,如果协商缓存不命中,则浏览器返回最新的资源给浏览器。

写代码:实现函数能够深度克隆基本类型

浅克隆:

function shallowClone(obj) {let cloneObj = {};for (let i in obj) {cloneObj[i] = obj[i];}return cloneObj;
}

深克隆:

  • 考虑基础类型
  • 引用类型
    • RegExp、Date、函数 不是 JSON 安全的
    • 会丢失 constructor,所有的构造函数都指向 Object
    • 破解循环引用
function deepCopy(obj) {if (typeof obj === 'object') {var result = obj.constructor === Array ? [] : {};for (var i in obj) {result[i] = typeof obj[i] === 'object' ? deepCopy(obj[i]) : obj[i];}} else {var result = obj;}return result;
}

如何解决跨越问题

(1)CORS

下面是MDN对于CORS的定义:

跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器  让运行在一个 origin (domain)上的Web应用被准许访问来自不同源服务器上的指定的资源。当一个资源从与该资源本身所在的服务器不同的域、协议或端口请求一个资源时,资源会发起一个跨域HTTP 请求。

CORS需要浏览器和服务器同时支持,整个CORS过程都是浏览器完成的,无需用户参与。因此实现CORS的关键就是服务器,只要服务器实现了CORS请求,就可以跨源通信了。

浏览器将CORS分为简单请求非简单请求

简单请求不会触发CORS预检请求。若该请求满足以下两个条件,就可以看作是简单请求:

1)请求方法是以下三种方法之一:

  • HEAD
  • GET
  • POST

2)HTTP的头信息不超出以下几种字段:

  • Accept
  • Accept-Language
  • Content-Language
  • Last-Event-ID
  • Content-Type:只限于三个值application/x-www-form-urlencoded、multipart/form-data、text/plain

若不满足以上条件,就属于非简单请求了。

(1)简单请求过程:

对于简单请求,浏览器会直接发出CORS请求,它会在请求的头信息中增加一个Orign字段,该字段用来说明本次请求来自哪个源(协议+端口+域名),服务器会根据这个值来决定是否同意这次请求。如果Orign指定的域名在许可范围之内,服务器返回的响应就会多出以下信息头:

Access-Control-Allow-Origin: http://api.bob.com  // 和Orign一直
Access-Control-Allow-Credentials: true   // 表示是否允许发送Cookie
Access-Control-Expose-Headers: FooBar   // 指定返回其他字段的值
Content-Type: text/html; charset=utf-8   // 表示文档类型

如果Orign指定的域名不在许可范围之内,服务器会返回一个正常的HTTP回应,浏览器发现没有上面的Access-Control-Allow-Origin头部信息,就知道出错了。这个错误无法通过状态码识别,因为返回的状态码可能是200。

在简单请求中,在服务器内,至少需要设置字段:Access-Control-Allow-Origin

(2)非简单请求过程

非简单请求是对服务器有特殊要求的请求,比如请求方法为DELETE或者PUT等。非简单请求的CORS请求会在正式通信之前进行一次HTTP查询请求,称为预检请求

浏览器会询问服务器,当前所在的网页是否在服务器允许访问的范围内,以及可以使用哪些HTTP请求方式和头信息字段,只有得到肯定的回复,才会进行正式的HTTP请求,否则就会报错。

预检请求使用的请求方法是OPTIONS,表示这个请求是来询问的。他的头信息中的关键字段是Orign,表示请求来自哪个源。除此之外,头信息中还包括两个字段:

  • Access-Control-Request-Method:该字段是必须的,用来列出浏览器的CORS请求会用到哪些HTTP方法。
  • Access-Control-Request-Headers: 该字段是一个逗号分隔的字符串,指定浏览器CORS请求会额外发送的头信息字段。

服务器在收到浏览器的预检请求之后,会根据头信息的三个字段来进行判断,如果返回的头信息在中有Access-Control-Allow-Origin这个字段就是允许跨域请求,如果没有,就是不同意这个预检请求,就会报错。

服务器回应的CORS的字段如下:

Access-Control-Allow-Origin: http://api.bob.com  // 允许跨域的源地址
Access-Control-Allow-Methods: GET, POST, PUT // 服务器支持的所有跨域请求的方法
Access-Control-Allow-Headers: X-Custom-Header  // 服务器支持的所有头信息字段
Access-Control-Allow-Credentials: true   // 表示是否允许发送Cookie
Access-Control-Max-Age: 1728000  // 用来指定本次预检请求的有效期,单位为秒

只要服务器通过了预检请求,在以后每次的CORS请求都会自带一个Origin头信息字段。服务器的回应,也都会有一个Access-Control-Allow-Origin头信息字段。

在非简单请求中,至少需要设置以下字段:

'Access-Control-Allow-Origin'  
'Access-Control-Allow-Methods'
'Access-Control-Allow-Headers'
减少OPTIONS请求次数:

OPTIONS请求次数过多就会损耗页面加载的性能,降低用户体验度。所以尽量要减少OPTIONS请求次数,可以后端在请求的返回头部添加:Access-Control-Max-Age:number。它表示预检请求的返回结果可以被缓存多久,单位是秒。该字段只对完全一样的URL的缓存设置生效,所以设置了缓存时间,在这个时间范围内,再次发送请求就不需要进行预检请求了。

CORS中Cookie相关问题:

在CORS请求中,如果想要传递Cookie,就要满足以下三个条件:

  • 在请求中设置 withCredentials

默认情况下在跨域请求,浏览器是不带 cookie 的。但是我们可以通过设置 withCredentials 来进行传递 cookie.

// 原生 xml 的设置方式
var xhr = new XMLHttpRequest();
xhr.withCredentials = true;
// axios 设置方式
axios.defaults.withCredentials = true;
  • Access-Control-Allow-Credentials 设置为 true
  • Access-Control-Allow-Origin 设置为非 *

(2)JSONP

jsonp的原理就是利用<script>标签没有跨域限制,通过<script>标签src属性,发送带有callback参数的GET请求,服务端将接口返回数据拼凑到callback函数中,返回给浏览器,浏览器解析执行,从而前端拿到callback函数返回的数据。
1)原生JS实现:

<script>var script = document.createElement('script');script.type = 'text/javascript';// 传参一个回调函数名给后端,方便后端返回时执行这个在前端定义的回调函数script.src = 'http://www.domain2.com:8080/login?user=admin&callback=handleCallback';document.head.appendChild(script);// 回调执行函数function handleCallback(res) {alert(JSON.stringify(res));}</script>

服务端返回如下(返回时即执行全局函数):

handleCallback({"success": true, "user": "admin"})

2)Vue axios实现:

this.$http = axios;
this.$http.jsonp('http://www.domain2.com:8080/login', {params: {},jsonp: 'handleCallback'
}).then((res) => {console.log(res); 
})

后端node.js代码:

var querystring = require('querystring');
var http = require('http');
var server = http.createServer();
server.on('request', function(req, res) {var params = querystring.parse(req.url.split('?')[1]);var fn = params.callback;// jsonp返回设置res.writeHead(200, { 'Content-Type': 'text/javascript' });res.write(fn + '(' + JSON.stringify(params) + ')');res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');

JSONP的缺点:

  • 具有局限性, 仅支持get方法
  • 不安全,可能会遭受XSS攻击

(3)postMessage 跨域

postMessage是HTML5 XMLHttpRequest Level 2中的API,且是为数不多可以跨域操作的window属性之一,它可用于解决以下方面的问题:

  • 页面和其打开的新窗口的数据传递
  • 多窗口之间消息传递
  • 页面与嵌套的iframe消息传递
  • 上面三个场景的跨域数据传递

用法:postMessage(data,origin)方法接受两个参数:

  • data: html5规范支持任意基本类型或可复制的对象,但部分浏览器只支持字符串,所以传参时最好用JSON.stringify()序列化。
  • origin: 协议+主机+端口号,也可以设置为"*“,表示可以传递给任意窗口,如果要指定和当前窗口同源的话设置为”/"。

1)a.html:(domain1.com/a.html)

<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script>           var iframe = document.getElementById('iframe');    iframe.onload = function() {        var data = {            name: 'aym'};        // 向domain2传送跨域数据iframe.contentWindow.postMessage(JSON.stringify(data), 'http://www.domain2.com');    };    // 接受domain2返回数据window.addEventListener('message', function(e) {        alert('data from domain2 ---> ' + e.data);    }, false);
</script>

2)b.html:(domain2.com/b.html)

<script>// 接收domain1的数据window.addEventListener('message', function(e) {alert('data from domain1 ---> ' + e.data);var data = JSON.parse(e.data);if (data) {data.number = 16;// 处理后再发回domain1window.parent.postMessage(JSON.stringify(data), 'http://www.domain1.com');}}, false);
</script>

(4)nginx代理跨域

nginx代理跨域,实质和CORS跨域原理一样,通过配置文件设置请求响应头Access-Control-Allow-Origin…等字段。

1)nginx配置解决iconfont跨域
浏览器跨域访问js、css、img等常规静态资源被同源策略许可,但iconfont字体文件(eot|otf|ttf|woff|svg)例外,此时可在nginx的静态资源服务器中加入以下配置。

location / {add_header Access-Control-Allow-Origin *;
}

2)nginx反向代理接口跨域
跨域问题:同源策略仅是针对浏览器的安全策略。服务器端调用HTTP接口只是使用HTTP协议,不需要同源策略,也就不存在跨域问题。
实现思路:通过Nginx配置一个代理服务器域名与domain1相同,端口不同)做跳板机,反向代理访问domain2接口,并且可以顺便修改cookie中domain信息,方便当前域cookie写入,实现跨域访问。

nginx具体配置:

#proxy服务器
server {listen       81;server_name  www.domain1.com;location / {proxy_pass   http://www.domain2.com:8080;  #反向代理proxy_cookie_domain www.domain2.com www.domain1.com; #修改cookie里域名index  index.html index.htm;# 当用webpack-dev-server等中间件代理接口访问nignx时,此时无浏览器参与,故没有同源限制,下面的跨域配置可不启用add_header Access-Control-Allow-Origin http://www.domain1.com;  #当前端只跨域不带cookie时,可为*add_header Access-Control-Allow-Credentials true;}
}

(5)nodejs 中间件代理跨域

node中间件实现跨域代理,原理大致与nginx相同,都是通过启一个代理服务器,实现数据的转发,也可以通过设置cookieDomainRewrite参数修改响应头中cookie中域名,实现当前域的cookie写入,方便接口登录认证。

1)非vue框架的跨域 使用node + express + http-proxy-middleware搭建一个proxy服务器。

  • 前端代码:
var xhr = new XMLHttpRequest();
// 前端开关:浏览器是否读写cookie
xhr.withCredentials = true;
// 访问http-proxy-middleware代理服务器
xhr.open('get', 'http://www.domain1.com:3000/login?user=admin', true);
xhr.send();
  • 中间件服务器代码:
var express = require('express');
var proxy = require('http-proxy-middleware');
var app = express();
app.use('/', proxy({// 代理跨域目标接口target: 'http://www.domain2.com:8080',changeOrigin: true,// 修改响应头信息,实现跨域并允许带cookieonProxyRes: function(proxyRes, req, res) {res.header('Access-Control-Allow-Origin', 'http://www.domain1.com');res.header('Access-Control-Allow-Credentials', 'true');},// 修改响应信息中的cookie域名cookieDomainRewrite: 'www.domain1.com'  // 可以为false,表示不修改
}));
app.listen(3000);
console.log('Proxy server is listen at port 3000...');

2)vue框架的跨域

node + vue + webpack + webpack-dev-server搭建的项目,跨域请求接口,直接修改webpack.config.js配置。开发环境下,vue渲染服务和接口代理服务都是webpack-dev-server同一个,所以页面与代理接口之间不再跨域。

webpack.config.js部分配置:

module.exports = {entry: {},module: {},...devServer: {historyApiFallback: true,proxy: [{context: '/login',target: 'http://www.domain2.com:8080',  // 代理跨域目标接口changeOrigin: true,secure: false,  // 当代理某些https服务报错时用cookieDomainRewrite: 'www.domain1.com'  // 可以为false,表示不修改}],noInfo: true}
}

(6)document.domain + iframe跨域

此方案仅限主域相同,子域不同的跨域应用场景。实现原理:两个页面都通过js强制设置document.domain为基础主域,就实现了同域。
1)父窗口:(domain.com/a.html)

<iframe id="iframe" src="http://child.domain.com/b.html"></iframe>
<script>document.domain = 'domain.com';    var user = 'admin';
</script>

1)子窗口:(child.domain.com/a.html)

<script>document.domain = 'domain.com';// 获取父窗口中变量console.log('get js data from parent ---> ' + window.parent.user);
</script>

(7)location.hash + iframe跨域

实现原理:a欲与b跨域相互通信,通过中间页c来实现。 三个页面,不同域之间利用iframe的location.hash传值,相同域之间直接js访问来通信。

具体实现:A域:a.html -> B域:b.html -> A域:c.html,a与b不同域只能通过hash值单向通信,b与c也不同域也只能单向通信,但c与a同域,所以c可通过parent.parent访问a页面所有对象。

1)a.html:(domain1.com/a.html)

<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script>var iframe = document.getElementById('iframe');    // 向b.html传hash值setTimeout(function() {        iframe.src = iframe.src + '#user=admin';    }, 1000);        // 开放给同域c.html的回调方法function onCallback(res) {        alert('data from c.html ---> ' + res);    }
</script>

2)b.html:(.domain2.com/b.html)

<iframe id="iframe" src="http://www.domain1.com/c.html" style="display:none;"></iframe>
<script>var iframe = document.getElementById('iframe');// 监听a.html传来的hash值,再传给c.htmlwindow.onhashchange = function () {iframe.src = iframe.src + location.hash;};
</script>
<script>// 监听b.html传来的hash值window.onhashchange = function () {// 再通过操作同域a.html的js回调,将结果传回window.parent.parent.onCallback('hello: ' + location.hash.replace('#user=', ''));};
</script>

(8)window.name + iframe跨域

window.name属性的独特之处:name值在不同的页面(甚至不同域名)加载后依旧存在,并且可以支持非常长的 name 值(2MB)。

1)a.html:(domain1.com/a.html)

var proxy = function(url, callback) {var state = 0;var iframe = document.createElement('iframe');// 加载跨域页面iframe.src = url;// onload事件会触发2次,第1次加载跨域页,并留存数据于window.nameiframe.onload = function() {if (state === 1) {// 第2次onload(同域proxy页)成功后,读取同域window.name中数据callback(iframe.contentWindow.name);destoryFrame();} else if (state === 0) {// 第1次onload(跨域页)成功后,切换到同域代理页面iframe.contentWindow.location = 'http://www.domain1.com/proxy.html';state = 1;}};document.body.appendChild(iframe);// 获取数据以后销毁这个iframe,释放内存;这也保证了安全(不被其他域frame js访问)function destoryFrame() {iframe.contentWindow.document.write('');iframe.contentWindow.close();document.body.removeChild(iframe);}
};
// 请求跨域b页面数据
proxy('http://www.domain2.com/b.html', function(data){alert(data);
});

2)proxy.html:(domain1.com/proxy.html)

中间代理页,与a.html同域,内容为空即可。
3)b.html:(domain2.com/b.html)

<script>    window.name = 'This is domain2 data!';
</script>

通过iframe的src属性由外域转向本地域,跨域数据即由iframe的window.name从外域传递到本地域。这个就巧妙地绕过了浏览器的跨域访问限制,但同时它又是安全操作。

(9)WebSocket协议跨域

WebSocket protocol是HTML5一种新的协议。它实现了浏览器与服务器全双工通信,同时允许跨域通讯,是server push技术的一种很好的实现。

原生WebSocket API使用起来不太方便,我们使用Socket.io,它很好地封装了webSocket接口,提供了更简单、灵活的接口,也对不支持webSocket的浏览器提供了向下兼容。

1)前端代码:

<div>user input:<input type="text"></div>
<script src="https://cdn.bootcss.com/socket.io/2.2.0/socket.io.js"></script>
<script>
var socket = io('http://www.domain2.com:8080');
// 连接成功处理
socket.on('connect', function() {    // 监听服务端消息socket.on('message', function(msg) {        console.log('data from server: ---> ' + msg);     });    // 监听服务端关闭socket.on('disconnect', function() {         console.log('Server socket has closed.');     });});
document.getElementsByTagName('input')[0].onblur = function() {    socket.send(this.value);};
</script>

2)Nodejs socket后台:

var http = require('http');
var socket = require('socket.io');
// 启http服务
var server = http.createServer(function(req, res) {res.writeHead(200, {'Content-type': 'text/html'});res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');
// 监听socket连接
socket.listen(server).on('connection', function(client) {// 接收信息client.on('message', function(msg) {client.send('hello:' + msg);console.log('data from client: ---> ' + msg);});// 断开处理client.on('disconnect', function() {console.log('Client socket has closed.'); });
});

同步和异步的区别

  • 同步指的是当一个进程在执行某个请求时,如果这个请求需要等待一段时间才能返回,那么这个进程会一直等待下去,直到消息返回为止再继续向下执行。
  • 异步指的是当一个进程在执行某个请求时,如果这个请求需要等待一段时间才能返回,这个时候进程会继续往下执行,不会阻塞等待消息的返回,当消息返回时系统再通知进程进行处理。

什么是文档的预解析?

Webkit 和 Firefox 都做了这个优化,当执行 JavaScript 脚本时,另一个线程解析剩下的文档,并加载后面需要通过网络加载的资源。这种方式可以使资源并行加载从而使整体速度更快。需要注意的是,预解析并不改变 DOM 树,它将这个工作留给主解析过程,自己只解析外部资源的引用,比如外部脚本、样式表及图片。

li 与 li 之间有看不见的空白间隔是什么原因引起的?如何解决?

浏览器会把inline内联元素间的空白字符(空格、换行、Tab等)渲染成一个空格。为了美观,通常是一个<li>放在一行,这导致<li>换行后产生换行字符,它变成一个空格,占用了一个字符的宽度。

解决办法:

(1)为<li>设置float:left。不足:有些容器是不能设置浮动,如左右切换的焦点图等。

(2)将所有<li>写在同一行。不足:代码不美观。

(3)将<ul>内的字符尺寸直接设为0,即font-size:0。不足:<ul>中的其他字符尺寸也被设为0,需要额外重新设定其他字符尺寸,且在Safari浏览器依然会出现空白间隔。

(4)消除<ul>的字符间隔letter-spacing:-8px,不足:这也设置了<li>内的字符间隔,因此需要将<li>内的字符间隔设为默认letter-spacing:normal。

DNS 记录和报文

DNS 服务器中以资源记录的形式存储信息,每一个 DNS 响应报文一般包含多条资源记录。一条资源记录的具体的格式为

(Name,Value,Type,TTL)

其中 TTL 是资源记录的生存时间,它定义了资源记录能够被其他的 DNS 服务器缓存多长时间。

常用的一共有四种 Type 的值,分别是 A、NS、CNAME 和 MX ,不同 Type 的值,对应资源记录代表的意义不同:

  • 如果 Type = A,则 Name 是主机名,Value 是主机名对应的 IP 地址。因此一条记录为 A 的资源记录,提供了标 准的主机名到 IP 地址的映射。
  • 如果 Type = NS,则 Name 是个域名,Value 是负责该域名的 DNS 服务器的主机名。这个记录主要用于 DNS 链式 查询时,返回下一级需要查询的 DNS 服务器的信息。
  • 如果 Type = CNAME,则 Name 为别名,Value 为该主机的规范主机名。该条记录用于向查询的主机返回一个主机名 对应的规范主机名,从而告诉查询主机去查询这个主机名的 IP 地址。主机别名主要是为了通过给一些复杂的主机名提供 一个便于记忆的简单的别名。
  • 如果 Type = MX,则 Name 为一个邮件服务器的别名,Value 为邮件服务器的规范主机名。它的作用和 CNAME 是一 样的,都是为了解决规范主机名不利于记忆的缺点。

扩展运算符的作用及使用场景

(1)对象扩展运算符

对象的扩展运算符(…)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中。

let bar = { a: 1, b: 2 };
let baz = { ...bar }; // { a: 1, b: 2 }

上述方法实际上等价于:

let bar = { a: 1, b: 2 };
let baz = Object.assign({}, bar); // { a: 1, b: 2 }

Object.assign方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target)Object.assign方法的第一个参数是目标对象,后面的参数都是源对象。(如果目标对象与源对象有同名属性,或多个源对象有同名属性,则后面的属性会覆盖前面的属性)。

同样,如果用户自定义的属性,放在扩展运算符后面,则扩展运算符内部的同名属性会被覆盖掉。

let bar = {a: 1, b: 2};
let baz = {...bar, ...{a:2, b: 4}};  // {a: 2, b: 4}

利用上述特性就可以很方便的修改对象的部分属性。在redux中的reducer函数规定必须是一个纯函数reducer中的state对象要求不能直接修改,可以通过扩展运算符把修改路径的对象都复制一遍,然后产生一个新的对象返回。

需要注意:扩展运算符对对象实例的拷贝属于浅拷贝

(2)数组扩展运算符

数组的扩展运算符可以将一个数组转为用逗号分隔的参数序列,且每次只能展开一层数组。

console.log(...[1, 2, 3])
// 1 2 3
console.log(...[1, [2, 3, 4], 5])
// 1 [2, 3, 4] 5

下面是数组的扩展运算符的应用:

  • 将数组转换为参数序列
function add(x, y) {return x + y;
}
const numbers = [1, 2];
add(...numbers) // 3
  • 复制数组
const arr1 = [1, 2];
const arr2 = [...arr1];

要记住:扩展运算符(…)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中,这里参数对象是个数组,数组里面的所有对象都是基础数据类型,将所有基础数据类型重新拷贝到新的数组中。

  • 合并数组

如果想在数组内合并数组,可以这样:

const arr1 = ['two', 'three'];const arr2 = ['one', ...arr1, 'four', 'five'];// ["one", "two", "three", "four", "five"]
  • 扩展运算符与解构赋值结合起来,用于生成数组
const [first, ...rest] = [1, 2, 3, 4, 5];first // 1rest  // [2, 3, 4, 5]

需要注意:如果将扩展运算符用于数组赋值,只能放在参数的最后一位,否则会报错。

const [...rest, last] = [1, 2, 3, 4, 5];         // 报错const [first, ...rest, last] = [1, 2, 3, 4, 5];  // 报错
  • 将字符串转为真正的数组
[...'hello']    // [ "h", "e", "l", "l", "o" ]
  • 任何 Iterator 接口的对象,都可以用扩展运算符转为真正的数组

比较常见的应用是可以将某些数据结构转为数组:

// arguments对象
function foo() {const args = [...arguments];
}

用于替换es5中的Array.prototype.slice.call(arguments)写法。

  • 使用Math函数获取数组中特定的值
const numbers = [9, 4, 7, 1];
Math.min(...numbers); // 1
Math.max(...numbers); // 9

详细说明 Event loop

众所周知 JS 是门非阻塞单线程语言,因为在最初 JS 就是为了和浏览器交互而诞生的。如果 JS 是门多线程的语言话,我们在多个线程中处理 DOM 就可能会发生问题(一个线程中新加节点,另一个线程中删除节点),当然可以引入读写锁解决这个问题。

JS 在执行的过程中会产生执行环境,这些执行环境会被顺序的加入到执行栈中。如果遇到异步的代码,会被挂起并加入到 Task(有多种 task) 队列中。一旦执行栈为空,Event Loop 就会从 Task 队列中拿出需要执行的代码并放入执行栈中执行,所以本质上来说 JS 中的异步还是同步行为。

console.log('script start');setTimeout(function() {console.log('setTimeout');
}, 0);console.log('script end');

以上代码虽然 setTimeout 延时为 0,其实还是异步。这是因为 HTML5 标准规定这个函数第二个参数不得小于 4 毫秒,不足会自动增加。所以 setTimeout 还是会在 script end 之后打印。

不同的任务源会被分配到不同的 Task 队列中,任务源可以分为 微任务(microtask) 和 宏任务(macrotask)。在 ES6 规范中,microtask 称为 jobs,macrotask 称为 task

console.log('script start');setTimeout(function() {console.log('setTimeout');
}, 0);new Promise((resolve) => {console.log('Promise')resolve()
}).then(function() {console.log('promise1');
}).then(function() {console.log('promise2');
});console.log('script end');
// script start => Promise => script end => promise1 => promise2 => setTimeout

以上代码虽然 setTimeout 写在 Promise 之前,但是因为 Promise 属于微任务而 setTimeout 属于宏任务,所以会有以上的打印。

微任务包括 process.nextTickpromiseObject.observeMutationObserver

宏任务包括 scriptsetTimeoutsetIntervalsetImmediateI/OUI rendering

很多人有个误区,认为微任务快于宏任务,其实是错误的。因为宏任务中包括了 script ,浏览器会先执行一个宏任务,接下来有异步代码的话就先执行微任务。

所以正确的一次 Event loop 顺序是这样的

  1. 执行同步代码,这属于宏任务
  2. 执行栈为空,查询是否有微任务需要执行
  3. 执行所有微任务
  4. 必要的话渲染 UI
  5. 然后开始下一轮 Event loop,执行宏任务中的异步代码

通过上述的 Event loop 顺序可知,如果宏任务中的异步代码有大量的计算并且需要操作 DOM 的话,为了更快的 界面响应,我们可以把操作 DOM 放入微任务中。

Node 中的 Event loop

Node 中的 Event loop 和浏览器中的不相同。

Node 的 Event loop 分为6个阶段,它们会按照顺序反复运行

┌───────────────────────┐
┌─>│        timers         │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
│  │     I/O callbacks     │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
│  │     idle, prepare     │
│  └──────────┬────────────┘      ┌───────────────┐
│  ┌──────────┴────────────┐      │   incoming:   │
│  │         poll          │<──connections───     │
│  └──────────┬────────────┘      │   data, etc.  │
│  ┌──────────┴────────────┐      └───────────────┘
│  │        check          │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
└──┤    close callbacks    │└───────────────────────┘
timer

timers 阶段会执行 setTimeoutsetInterval

一个 timer 指定的时间并不是准确时间,而是在达到这个时间后尽快执行回调,可能会因为系统正在执行别的事务而延迟。

下限的时间有一个范围:[1, 2147483647] ,如果设定的时间不在这个范围,将被设置为1。

I/O

I/O 阶段会执行除了 close 事件,定时器和 setImmediate 的回调

idle, prepare

idle, prepare 阶段内部实现

poll

poll 阶段很重要,这一阶段中,系统会做两件事情

  1. 执行到点的定时器
  2. 执行 poll 队列中的事件

并且当 poll 中没有定时器的情况下,会发现以下两件事情

  • 如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者系统限制
  • 如果 poll 队列为空,会有两件事发生
    • 如果有 setImmediate 需要执行,poll 阶段会停止并且进入到 check 阶段执行 setImmediate
    • 如果没有 setImmediate 需要执行,会等待回调被加入到队列中并立即执行回调

如果有别的定时器需要被执行,会回到 timer 阶段执行回调。

check

check 阶段执行 setImmediate

close callbacks

close callbacks 阶段执行 close 事件

并且在 Node 中,有些情况下的定时器执行顺序是随机的

setTimeout(() => {console.log('setTimeout');
}, 0);
setImmediate(() => {console.log('setImmediate');
})
// 这里可能会输出 setTimeout,setImmediate
// 可能也会相反的输出,这取决于性能
// 因为可能进入 event loop 用了不到 1 毫秒,这时候会执行 setImmediate
// 否则会执行 setTimeout

当然在这种情况下,执行顺序是相同的

var fs = require('fs')fs.readFile(__filename, () => {setTimeout(() => {console.log('timeout');}, 0);setImmediate(() => {console.log('immediate');});
});
// 因为 readFile 的回调在 poll 中执行
// 发现有 setImmediate ,所以会立即跳到 check 阶段执行回调
// 再去 timer 阶段执行 setTimeout
// 所以以上输出一定是 setImmediate,setTimeout

上面介绍的都是 macrotask 的执行情况,microtask 会在以上每个阶段完成后立即执行。

setTimeout(()=>{console.log('timer1')Promise.resolve().then(function() {console.log('promise1')})
}, 0)setTimeout(()=>{console.log('timer2')Promise.resolve().then(function() {console.log('promise2')})
}, 0)// 以上代码在浏览器和 node 中打印情况是不同的
// 浏览器中打印 timer1, promise1, timer2, promise2
// node 中打印 timer1, timer2, promise1, promise2

Node 中的 process.nextTick 会先于其他 microtask 执行。

setTimeout(() => {console.log("timer1");Promise.resolve().then(function() {console.log("promise1");});
}, 0);process.nextTick(() => {console.log("nextTick");
});
// nextTick, timer1, promise1

说一下类组件和函数组件的区别?

1. 语法上的区别:函数式组件是一个纯函数,它是需要接受props参数并且返回一个React元素就可以了。类组件是需要继承React.Component的,而且class组件需要创建render并且返回React元素,语法上来讲更复杂。2. 调用方式函数式组件可以直接调用,返回一个新的React元素;类组件在调用时是需要创建一个实例的,然后通过调用实例里的render方法来返回一个React元素。3. 状态管理函数式组件没有状态管理,类组件有状态管理。4. 使用场景类组件没有具体的要求。函数式组件一般是用在大型项目中来分割大组件(函数式组件不用创建实例,所有更高效),一般情况下能用函数式组件就不用类组件,提升效率。

浏览器乱码的原因是什么?如何解决?

产生乱码的原因:

  • 网页源代码是gbk的编码,而内容中的中文字是utf-8编码的,这样浏览器打开即会出现html乱码,反之也会出现乱码;
  • html网页编码是gbk,而程序从数据库中调出呈现是utf-8编码的内容也会造成编码乱码;
  • 浏览器不能自动检测网页编码,造成网页乱码。

解决办法:

  • 使用软件编辑HTML网页内容;
  • 如果网页设置编码是gbk,而数据库储存数据编码格式是UTF-8,此时需要程序查询数据库数据显示数据前进程序转码;
  • 如果浏览器浏览时候出现网页乱码,在浏览器中找到转换编码的菜单进行转换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_231207.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM基础(1):Cortex-M3的核心寄存器和特殊寄存器

Cortex-M3处理器的寄存器包括R0~R15和一些特殊的寄存器。其中R0到R12是通用寄存器&#xff0c;但是一些16位的Thumb指令只能访问R0到R7(低寄存器)&#xff0c;而32位的Thumb-2指令则可以访问所有这些寄存器。特殊寄存器只能通过特殊访问指令访问。 文章目录1 核心寄存器1.1 R13…

用友NC6.5 Linux服务器环境部署

用友NC6.5 Linux服务器环境部署 1.环境配置要求  1.1 操作系统平台 应用服务器操作系统版本&#xff08;补丁&#xff09;中间件类型JDK 版本Linux-RedHat(x64&#xff0c;多核)Enterprise Linux Server release 6.3Websphere 8.5.0.1/UAP/Weblogic11SUN JDK1.7_51/IBM SDK,V…

ArgoDB 5.1 正式发布:多模融合、实时分析和数据安全多重升级

Transwarp ArgoDB是星环科技自主研发的高性能分布式分析型数据库&#xff0c;在PB级数据量上提供极致的数据分析能力。ArgoDB支持标准SQL语法和分布式事务&#xff0c;提供高并发高速数据写入、复杂查询、多模分析、数据联邦、隐私计算和动态脱敏等能力。基于星环科技ArgoDB数据…

PacBio HiFi 测序动植物基因组项目真实案例测评

HiFi Reads全称High fidelity reads, 是PacBio公司基于Sequel II平台产出的兼具长读长和高准确度的测序序列&#xff0c;该测序模式&#xff08;CCS测序模式&#xff09;一经问世&#xff0c;备受广大组学科研用户关注——其超长读长完美规避了二代测序short reads的天生不足&a…

PWN利器-pwntools安装、调试教程一览

关于pwntools Documentation: pwntools — pwntools 4.10.0dev documentation Github: https://github.com/Gallopsled/pwntools#readme GitHub - Gallopsled/pwntools-tutorial: Tutorials for getting started with Pwntools pwntools是一个CTF框架和漏洞利用的python开发…

基于java(ssm)学生在线课程学习系统源码(java毕业设计)

基于java&#xff08;ssm&#xff09;学生在线课程学习系统 学生在线课程学习系统是基于java编程语言&#xff0c;mysql数据库&#xff0c;ssm框架&#xff0c;和idea工具开发&#xff0c;本项目主要分为学生&#xff0c;管理员两个角色&#xff0c;学生的功能是登陆&#xff…

5款高效率,但是名气不大的小众软件

今天推荐5款十分小众的软件&#xff0c;但是每个都是非常非常好用的&#xff0c;用完后觉得不好用你找我。 1.多窗口文件整理——Q-Dir Q-Dir 是一款多窗口文件整理工具&#xff0c;特别适合用户频繁在各个文件夹中跳转进行复制粘贴的文件归档操作。如果你的电脑硬盘中文件已经…

红队渗透靶场之SickOs1.1

靶场考察知识 shellshock漏洞 shellshock即unix系统下的bash shell的一个漏洞, Bash 4.3以及之前的版本在处理某些构造的环境变量时存在安全漏洞, 向环境变量值内的函数定义后添加多余的字符串会触发此漏洞, 攻击者可利用此漏洞改变或绕过环境限制&#xff0c;以执行任意的sh…

vue中pc端大屏怎么进行rem适配(lib-flexible + postcss-plugin-px2rem)

npm i lib-flexible -Spostcss-plugin-px2rem在main.js中引入 import lib-flexible/flexible.js找到node_modules里找到lib-flexible&#xff0c;修改flexible.js 搜索540找到refreshRem函数修改 function refreshRem() {var width docEl.getBoundingClientRect().width;if (…

电脑e盘不见了怎么恢复?6个步骤找回e盘

电脑e盘不见虽然不是一件常见的事&#xff0c;但是也会有发生的情况。虽然我们还有其他磁盘&#xff0c;平时也会经常忽略e盘。但是e盘也是一个存储磁盘&#xff0c;当电脑e盘不见了&#xff0c;我们也会想要找回来。那么电脑里的e盘丢失了怎么找回呢&#xff1f;下面我们就一起…

【历史上的今天】12 月 6 日:微波炉问世;多媒体格式 Mkv 诞生;日立环球存储科技公司成立

整理 | 王启隆 透过「历史上的今天」&#xff0c;从过去看未来&#xff0c;从现在亦可以改变未来。 今天是 2022 年 12 月 6 日&#xff0c;在 1892 年的今天&#xff0c;世界著名电子电器之父西门子逝世。西门子&#xff08;Siemens&#xff09;是全球领先的科技企业&#xf…

使用RMI实现RPC

1 RMI简介 RMI(Remote Method Invocation) 远程方法调用。 RMI是从JDK1.2推出的功能&#xff0c;它可以实现在一个Java应用中可以像调用本地方法一样调用另一个服务器中Java应用&#xff08;JVM&#xff09;中的内容。 RMI 是Java语言的远程调用&#xff0c;无法实现跨语言。…

元宇宙工程系,来了一位“吃螃蟹”者

转自《中国科学报》 记者 温才妃 潘志庚&#xff08;右&#xff09;给学生讲授元宇宙技术。受访者供图 元宇宙办学潮正在高校中暗涌。 不久前&#xff0c;南京信息工程大学人工智能学院&#xff08;未来技术学院&#xff09;信息工程系正式更名为元宇宙工程系&#xff0c;成为…

Kubernetes v1.25 搭建单节点集群用于Debug K8S源码

参考说明 参考自&#xff1a;v1.25.0-CentOS-binary-install-IPv6-IPv4-Three-Masters-Two-Slaves.md&#xff0c;按照自己的理解修改了下。 搭建好的单节点v1.25.4版本集群 1. 集群环境准备 1.1. 主机规划 IP主机名主机角色操作系统安装组件192.168.11.71k8s-master1maste…

HTML网页设计【足球科普】学生DW静态网页设计

&#x1f389;精彩专栏推荐 &#x1f4ad;文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业&#xff1a; 【&#x1f4da;毕设项目精品实战案例 (10…

02-SpringBoot基础

一、回顾 二、知识目标 SpringBoot概述【了解】 SpringBoot快速入门【掌握】 SpringBoot启动原理【重点】 SpringBoot配置文件【掌握】 SpringBoot属性注入【掌握】 三、为什么使用SpringBoot&#xff1f; -SSM开发有哪些痛点&#xff1f; 1、在早期我们都是使用的是SSM来…

1.Spring概述(Spring官方文档总结)

目录 1.1jdk环境依赖 1.2 Spring介绍 1.3 Spring历史 1.4 设计理念 1.1 jdk环境依赖 从Spring Framework 5.1开始&#xff0c;Spring需要JDK 8 (Java SE 8)&#xff0c;并提供对JDK 11 LTS的开箱即用支持。建议将Java SE 8 update 60作为Java 8的最低补丁版本&#xff0c;但…

磁盘和文件系统管理(一)

检测并确认新硬盘 fdisk命令 查看或管理磁盘分区 fdisk -l [磁盘设备] 或 fdisk [磁盘设备] 交互模式中的常用指令 m、p、n、d、t、w、q d delete a partition * 删除分区 g create a new empty GPT partition table 创建一个新的空的GPT分区表(可以对大于2T磁盘进行分区) l…

如何安装Ambari集群_大数据培训

注意&#xff1a;以下操作主节点操作即可 1 制作本地源 制作本地源是因为在线安装Ambari太慢。制作本地源只需在主节点上进行。 1.1 配置HTTPD 服务 配置HTTPD 服务到系统层使其随系统自动启动 [roothadoop102 ~]# chkconfig httpd on [roothadoop102 ~]# service httpd …