ANR 触发、监控、分析 一网打尽

news/2024/5/21 10:21:40/文章来源:https://blog.csdn.net/xfhy_/article/details/128113820

平时看博客或者学知识,学到的东西比较零散,没有独立的知识模块概念,而且学了之后很容易忘。于是我建立了一个自己的笔记仓库 (一个我长期维护的笔记仓库,感兴趣的可以点个star~你的star是我写作的巨大大大大的动力),将平时学到的东西都归类然后放里面,需要的时候呢也方便复习。

仅做学习和记录,方案非原创。

1. ANR是什么

ANR全称是Applicatipon No Response,Android设计ANR的用意,是系统通过与之交互的组件以及用户交互进行超时监控,用来判断应用进程是否存在卡死或响应过慢的问题,通俗来说就是很多系统中看门狗(watchdog)的设计思想。

2. 导致ANR的原因

耗时操作导致ANR,并不一定是app的问题,实际上,有很大的概率是系统原因导致的ANR。下面简单分析一下哪些操作是应用层导致的ANR,哪些是系统导致的ANR。

应用层导致ANR:

  • 函数阻塞:如死循环、主线程IO、处理大数据
  • 锁出错:主线程等待子线程的锁
  • 内存紧张:系统分配给一个应用的内存是有上限的,长期处于内存紧张,会导致频繁内存交换,进而导致应用的一些操作超时

系统导致ANR:

  • CPU被抢占:一般来说,前台在玩游戏,可能会导致你的后台广播被抢占
  • 系统服务无法及时响应:比如获取系统联系人等,系统的服务都是Binder机制,服务能力也是有限的,有可能系统服务长时间不响应导致ANR
  • 其他应用占用大量内存

3. 线下拿到ANR日志

  • adb pull /data/anr/
  • adb bugreport

缺陷:

  • 只能线下,用户反馈时,无法获取ANR日志
  • 可能没有堆栈信息

4. ANR场景

  • Service Timeout:比如前台服务在20s内未执行完成,后台服务Timeout时间是前台服务的10倍,200s;
  • BroadcastQueue Timeout:比如前台广播在10s内未执行完成,后台60s
  • ContentProvider Timeout:内容提供者,在publish过超时10s;
  • InputDispatching Timeout: 输入事件分发超时5s,包括按键和触摸事件。
//ActiveServices.java
// How long we wait for a service to finish executing.
static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;
// How long the startForegroundService() grace period is to get around to
// calling startForeground() before we ANR + stop it.
static final int SERVICE_START_FOREGROUND_TIMEOUT = 10*1000;//ActivityManagerService.java
// How long we allow a receiver to run before giving up on it.
static final int BROADCAST_FG_TIMEOUT = 10*1000;
static final int BROADCAST_BG_TIMEOUT = 60*1000;
// How long we wait until we timeout on key dispatching.
static final int KEY_DISPATCHING_TIMEOUT = 5*1000;

5. ANR触发流程

ANR触发流程大致可分为2种,一种是Service、Broadcast、Provider触发ANR,另外一种是Input触发ANR。

5.1 Service、Broadcast、Provider触发ANR

大体流程可分为3个步骤:

  1. 埋定时炸弹
  2. 拆炸弹
  3. 引爆炸弹

下面举个startService的例子,详细说说这3个步骤:

1.埋定时炸弹

在Activity中调用startService后,调用链:ContextImpl.startService()->ContextImpl.startServiceCommon()->ActivityManagerService.startService()->ActiveServices.startServiceLocked()->ActiveServices.startServiceInnerLocked()->ActiveServices.bringUpServiceLocked()->ActiveServices.realStartServiceLocked()

//com.android.server.am.ActiveServices.java
private final void realStartServiceLocked(ServiceRecord r,ProcessRecord app, boolean execInFg) throws RemoteException {......//发个延迟消息给AMS的HandlerbumpServiceExecutingLocked(r, execInFg, "create");......try {//IPC通知app进程启动Service,执行handleCreateServiceapp.thread.scheduleCreateService(r, r.serviceInfo,mAm.compatibilityInfoForPackage(r.serviceInfo.applicationInfo),app.getReportedProcState());} catch (DeadObjectException e) {} finally {}
}private final void bumpServiceExecutingLocked(ServiceRecord r, boolean fg, String why) {scheduleServiceTimeoutLocked(r.app);.....
}final ActivityManagerService mAm;// How long we wait for a service to finish executing.
static final int SERVICE_TIMEOUT = 20*1000;// How long we wait for a service to finish executing.
static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;void scheduleServiceTimeoutLocked(ProcessRecord proc) {//mAm是AMS,mHandler是AMS里面的一个HandlerMessage msg = mAm.mHandler.obtainMessage(ActivityManagerService.SERVICE_TIMEOUT_MSG);msg.obj = proc;//发个延迟消息给AMS里面的一个HandlermAm.mHandler.sendMessageDelayed(msg,proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);
}

在startService流程中,在通知app进程启动Service之前,会进行预埋一个炸弹,也就是延迟发送一个消息给AMS的mHandler。当AMS的这个Handler收到SERVICE_TIMEOUT_MSG这个消息时,就认为Service超时了,触发ANR。也就是说,特定时间内,没人来拆这个炸弹,这个炸弹就会爆炸。

2. 拆炸弹

在AMS校验通过后,app这边可以启动Service,于是来到了ApplicationThread的scheduleCreateService方法,该方法是运行在binder线程里面的,所以得切到主线程去执行,也就是ActivityThread的handleCreateService方法:

//android.app.ActivityThread.java
@UnsupportedAppUsage
private void handleCreateService(CreateServiceData data) {......Service service = null;try {//1. 初始化ServiceContextImpl context = ContextImpl.createAppContext(this, packageInfo);Application app = packageInfo.makeApplication(false, mInstrumentation);java.lang.ClassLoader cl = packageInfo.getClassLoader();service = packageInfo.getAppFactory().instantiateService(cl, data.info.name, data.intent);......service.attach(context, this, data.info.name, data.token, app,ActivityManager.getService());//2. Service执行onCreate,启动完成service.onCreate();mServices.put(data.token, service);try {//3. Service启动完成,需要通知AMSActivityManager.getService().serviceDoneExecuting(data.token, SERVICE_DONE_EXECUTING_ANON, 0, 0);} catch (RemoteException e) {}} catch (Exception e) {}
}

在app进程这边启动完Service之后,需要IPC通信告知AMS我这边已经启动完成了。AMS.serviceDoneExecuting()->ActiveServices.serviceDoneExecutingLocked()

private void serviceDoneExecutingLocked(ServiceRecord r, boolean inDestroying,boolean finishing) {......mAm.mHandler.removeMessages(ActivityManagerService.SERVICE_TIMEOUT_MSG, r.app);......
}

很清晰,就是把之前延迟发送的SERVICE_TIMEOUT_MSG消息给移除掉,也就是拆炸弹。只要在规定的时间内把炸弹拆了,那就没事,要是没拆,炸弹就要爆炸,触发ANR。

3. 引爆炸弹

之前延迟给AMS的handler发送了一个消息,mAm.mHandler.sendMessageDelayed(msg,proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);,下面我们来看一下这条消息的逻辑

//com.android.server.am.ActivityManagerService.javafinal MainHandler mHandler;final class MainHandler extends Handler {@Overridepublic void handleMessage(Message msg) {switch (msg.what) {......case SERVICE_TIMEOUT_MSG: {//这个mServices是ActiveServicesmServices.serviceTimeout((ProcessRecord)msg.obj);} break;}......}......
}//com.android.server.am.ActiveServices.java
void serviceTimeout(ProcessRecord proc) {String anrMessage = null;synchronized(mAm) {//计算是否有service超时final long now = SystemClock.uptimeMillis();final long maxTime =  now -(proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);ServiceRecord timeout = null;for (int i=proc.executingServices.size()-1; i>=0; i--) {ServiceRecord sr = proc.executingServices.valueAt(i);if (sr.executingStart < maxTime) {timeout = sr;break;}}if (timeout != null && mAm.mProcessList.mLruProcesses.contains(proc)) {anrMessage = "executing service " + timeout.shortInstanceName;}}if (anrMessage != null) {//有超时的Service,mAm是AMS,mAnrHelper是AnrHelpermAm.mAnrHelper.appNotResponding(proc, anrMessage);}
}

AMS这边如果收到了SERVICE_TIMEOUT_MSG消息,也就是超时了,没人来拆炸弹,那么它会让ActiveServices确认一下是否有Service超时,有的话,再利用AnrHelper来触发ANR。

void appNotResponding(ProcessRecord anrProcess, String activityShortComponentName,ApplicationInfo aInfo, String parentShortComponentName,WindowProcessController parentProcess, boolean aboveSystem, String annotation) {//添加AnrRecord到List里面synchronized (mAnrRecords) {mAnrRecords.add(new AnrRecord(anrProcess, activityShortComponentName, aInfo,parentShortComponentName, parentProcess, aboveSystem, annotation));}startAnrConsumerIfNeeded();
}
private void startAnrConsumerIfNeeded() {if (mRunning.compareAndSet(false, true)) {//开个子线程来处理new AnrConsumerThread().start();}
}private class AnrConsumerThread extends Thread {@Overridepublic void run() {AnrRecord r;while ((r = next()) != null) {......//这里的r就是AnrRecordr.appNotResponding(onlyDumpSelf);......}}
}
private static class AnrRecord {void appNotResponding(boolean onlyDumpSelf) {//mApp是ProcessRecordmApp.appNotResponding(mActivityShortComponentName, mAppInfo,mParentShortComponentName, mParentProcess, mAboveSystem, mAnnotation,onlyDumpSelf);}
}

开了个子线程,然后调用ProcessRecord的appNotResponding方法来处理ANR的流程(弹出app无响应弹窗、dump堆栈什么的),具体流程下面会细说。到这里,炸弹就完全引爆了,触发了ANR。

5.2 Input触发ANR

input的超时检测机制跟Service、Broadcast、Provider截然不同,并非时间到了就一定被爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程。

input超时机制为什么是扫雷,而非定时爆炸?由于对于input来说即便某次事件执行时间超过Timeout时长,只要用户后续没有再生成输入事件,则不会触发ANR。这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果没有超过,则会重置anr的Timeout,从而不会爆炸。

5.3 哪些路径会引发ANR?

从埋下炸弹到拆炸弹之间的任何一个或多个路径执行慢都会导致ANR。这里以Service为例,如:

  • Service的生命周期的回调方法执行慢
  • 主线程的消息队列存在其他耗时消息让Service回调方法迟迟得不到执行
  • sp操作执行慢
  • system_server进程的binder线程繁忙而导致没有及时收到拆炸弹的指令

5.4 ANR dump主要流程

ANR流程基本是在system_server系统进程完成的,系统进程的行为我们很难监控到,想要监控这个事情就得从系统进程与应用进程沟通的边界着手,看边界上有没有可以操作的地方。

不管是怎么发生的ANR,最后都会走到appNotResponding ,比如输入超时的路径

  1. ActivityManagerService#inputDispatchingTimedOut
  2. AnrHelper#appNotResponding
  3. AnrConsumerThread#run
  4. AnrRecord#appNotResponding
  5. ProcessRecord#appNotResponding

那我们直接分析这个appNotResponding 方法:

//com.android.server.am.ProcessRecord.java
void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,String parentShortComponentName, WindowProcessController parentProcess,boolean aboveSystem, String annotation, boolean onlyDumpSelf) {ArrayList<Integer> firstPids = new ArrayList<>(5);SparseArray<Boolean> lastPids = new SparseArray<>(20);mWindowProcessController.appEarlyNotResponding(annotation, () -> kill("anr",ApplicationExitInfo.REASON_ANR, true));long anrTime = SystemClock.uptimeMillis();if (isMonitorCpuUsage()) {mService.updateCpuStatsNow();}final boolean isSilentAnr;synchronized (mService) {//注释1// PowerManager.reboot() can block for a long time, so ignore ANRs while shutting down.//正在重启if (mService.mAtmInternal.isShuttingDown()) {Slog.i(TAG, "During shutdown skipping ANR: " + this + " " + annotation);return;} else if (isNotResponding()) {//已经处于ANR流程中Slog.i(TAG, "Skipping duplicate ANR: " + this + " " + annotation);return;} else if (isCrashing()) {//正在crash的状态Slog.i(TAG, "Crashing app skipping ANR: " + this + " " + annotation);return;} else if (killedByAm) {//app已经被killedSlog.i(TAG, "App already killed by AM skipping ANR: " + this + " " + annotation);return;} else if (killed) {//app已经死亡了Slog.i(TAG, "Skipping died app ANR: " + this + " " + annotation);return;}// In case we come through here for the same app before completing// this one, mark as anring now so we will bail out.//做个标记setNotResponding(true);// Log the ANR to the event log.EventLog.writeEvent(EventLogTags.AM_ANR, userId, pid, processName, info.flags,annotation);// Dump thread traces as quickly as we can, starting with "interesting" processes.firstPids.add(pid);// Don't dump other PIDs if it's a background ANR or is requested to only dump self.//注释2//沉默的anr : 这里表示后台anrisSilentAnr = isSilentAnr();if (!isSilentAnr && !onlyDumpSelf) {int parentPid = pid;if (parentProcess != null && parentProcess.getPid() > 0) {parentPid = parentProcess.getPid();}if (parentPid != pid) firstPids.add(parentPid);if (MY_PID != pid && MY_PID != parentPid) firstPids.add(MY_PID);//选择需要dump的进程for (int i = getLruProcessList().size() - 1; i >= 0; i--) {ProcessRecord r = getLruProcessList().get(i);if (r != null && r.thread != null) {int myPid = r.pid;if (myPid > 0 && myPid != pid && myPid != parentPid && myPid != MY_PID) {if (r.isPersistent()) {firstPids.add(myPid);if (DEBUG_ANR) Slog.i(TAG, "Adding persistent proc: " + r);} else if (r.treatLikeActivity) {firstPids.add(myPid);if (DEBUG_ANR) Slog.i(TAG, "Adding likely IME: " + r);} else {lastPids.put(myPid, Boolean.TRUE);if (DEBUG_ANR) Slog.i(TAG, "Adding ANR proc: " + r);}}}}}}......int[] pids = nativeProcs == null ? null : Process.getPidsForCommands(nativeProcs);ArrayList<Integer> nativePids = null;if (pids != null) {nativePids = new ArrayList<>(pids.length);for (int i : pids) {nativePids.add(i);}}// For background ANRs, don't pass the ProcessCpuTracker to// avoid spending 1/2 second collecting stats to rank lastPids.StringWriter tracesFileException = new StringWriter();// To hold the start and end offset to the ANR trace file respectively.final long[] offsets = new long[2];//注释4File tracesFile = ActivityManagerService.dumpStackTraces(firstPids,isSilentAnr ? null : processCpuTracker, isSilentAnr ? null : lastPids,nativePids, tracesFileException, offsets);......
}

代码比较长,我们一步一步来看。

注释1处首先是针对几种特殊情况:正在重启、已经处于ANR流程中、正在crash、app已经被killed和app已经死亡了,不用处理ANR,直接return。

注释2处isSilentAnr是表示当前是否为一个后台ANR,后台ANR跟前台ANR表现不同,前台ANR会弹出无响应的Dialog,后台ANR会直接杀死进程。什么是前台ANR:发生ANR的进程对用户来说有感知,就是前台ANR,否则就是后台ANR。

注释3处,选择需要dump的进程。发生ANR时,为了方便定位问题,会dump很多信息到Trace文件中。而Trace文件里包含着与ANR相关联的进程的Trace信息,因为产生ANR的原因有可能是其他的进程抢占了太多资源,或者IPC到其他进程的时候卡住导致的。需要被dump的进程分为3类:

  • firstPids:firstPids是需要首先dump的重要进程,发生ANR的进程无论如何是一定要被dump的,也是首先被dump的,所以第一个被加到firstPids中。如果是SilentAnr(即后台ANR),不用再加入任何其他的进程。如果不是,需要进一步添加其他的进程:如果发生ANR的进程不是system_server进程的话,需要添加system_server进程;接下来轮询AMS维护的一个LRU的进程List,如果最近访问的进程包含了persistent的进程,或者带有 *BIND_TREAT_LIKE_ACTVITY* 标签的进程,都添加到firstPids中。
  • extraPids:LRU进程List中的其他进程,都会首先添加到lastPids中,然后lastPids会进一步被选出最近CPU使用率高的进程,进一步组成extraPids;
  • nativePids:nativePids最为简单,是一些固定的native的系统进程,定义在WatchDog.java中

注释4处,拿到需要dump的所有进程的pid后,AMS开始按照firstPids、nativePids、extraPids的顺序dump这些进程的堆栈。这里比较重要,我们需要跟进去看看具体做了什么。

public static Pair<Long, Long> dumpStackTraces(String tracesFile, ArrayList<Integer> firstPids,ArrayList<Integer> nativePids, ArrayList<Integer> extraPids) {// 最多dump 20秒long remainingTime = 20 * 1000;// First collect all of the stacks of the most important pids.if (firstPids != null) {int num = firstPids.size();for (int i = 0; i < num; i++) {final int pid = firstPids.get(i);final long timeTaken = dumpJavaTracesTombstoned(pid, tracesFile, remainingTime);remainingTime -= timeTaken;if (remainingTime <= 0) {Slog.e(TAG, "Aborting stack trace dump (current firstPid=" + pid+ "); deadline exceeded.");return firstPidStart >= 0 ? new Pair<>(firstPidStart, firstPidEnd) : null;}}}......
}

就是根据顺序取出前面传入的firstPids、nativePidsextraPids 的pid,然后逐一去dump这些进程中所有的线程,当然这是一个非常重的操作,一个进程就有那么多线程,更别说这么多进程了。所以,这里规定了个最长dump时间为20秒,超过则及时返回,这样可以确保ANR弹窗可以及时弹出(或者被kill掉)。接下来我们接着跟进dumpJavaTracesTombstoned。经过一连串的逻辑:ActivityManagerService#dumpJavaTracesTombstoned() → Debug#dumpJavaBacktraceToFileTimeout() → android_os_Debug#android_os_Debug_dumpJavaBacktraceToFileTimeout() → android_os_Debug#dumpTraces() → debuggerd_client#dump_backtrace_to_file_timeout() → debuggerd_client#debuggerd_trigger_dump()。

bool debuggerd_trigger_dump(pid_t tid, DebuggerdDumpType dump_type, unsigned int timeout_ms, unique_fd output_fd) {//pid是从AMS那边传过来的,即需要dump堆栈的进程pid_t pid = tid;//......// Send the signal.//从android_os_Debug_dumpJavaBacktraceToFileTimeout过来的,dump_type为kDebuggerdJavaBacktraceconst int signal = (dump_type == kDebuggerdJavaBacktrace) ? SIGQUIT : BIONIC_SIGNAL_DEBUGGER;sigval val = {.sival_int = (dump_type == kDebuggerdNativeBacktrace) ? 1 : 0};//sigqueue:在队列中向指定进程发送一个信号和数据,成功返回0if (sigqueue(pid, signal, val) != 0) {log_error(output_fd, errno, "failed to send signal to pid %d", pid);return false;}//......LOG(INFO) << TAG "done dumping process " << pid;return true;
}

注意,这里相当于是AMS进程间接给需要dump堆栈那个进程发送了一个SIGQUIT信号,那个进程收到SIGQUIT信号之后便开始dump。这里也就是前面所说的边界。现在看起来是当一个进程发生ANR时,则会收到SIGQUIT信号。如果,我们能监控到系统发送的SIGQUIT信号,也许就能感知到发生了ANR,达到监控的目的。

关于进程信号的处理,这里简单提一下:除Zygote进程外,每个进程都会创建一个SignalCatcher守护线程,用于捕获SIGQUIT、SIGUSR1信号,并采取相应的行为。

//art/runtime/signal_catcher.cc
void* SignalCatcher::Run(void* arg) {SignalCatcher* signal_catcher = reinterpret_cast<SignalCatcher*>(arg);CHECK(signal_catcher != nullptr);Runtime* runtime = Runtime::Current();//检查当前线程是否依附到Android RuntimeCHECK(runtime->AttachCurrentThread("Signal Catcher", true, runtime->GetSystemThreadGroup(), !runtime->IsAotCompiler()));Thread* self = Thread::Current();DCHECK_NE(self->GetState(), kRunnable);{MutexLock mu(self, signal_catcher->lock_);signal_catcher->thread_ = self;signal_catcher->cond_.Broadcast(self);}SignalSet signals;signals.Add(SIGQUIT); //添加对信号SIGQUIT的处理signals.Add(SIGUSR1); //添加对信号SIGUSR1的处理//死循环,不断等待监听2个信号的dao'lwhile (true) {//等待信号到来,这是个阻塞操作int signal_number = signal_catcher->WaitForSignal(self, signals);//当信号捕获需要停止时,则取消当前线程跟Android Runtime的关联。if (signal_catcher->ShouldHalt()) {runtime->DetachCurrentThread();return nullptr;}switch (signal_number) {case SIGQUIT:signal_catcher->HandleSigQuit(); //输出线程tracebreak;case SIGUSR1:signal_catcher->HandleSigUsr1(); //强制GCbreak;default:LOG(ERROR) << "Unexpected signal %d" << signal_number;break;}}
}

在SignalCatcher线程里面,死循环,通过WaitForSignal监听SIGQUIT和SIGUSR1信号的到来,前面系统进程system_server进程发送的SIGQUIT信号也就是在这里被监听到,然后开始dump堆栈。

现在,我们整理一下整个ANR的流程:

  1. 系统监控到app发生ANR后,收集了一些相关进程pid(包括发生ANR的进程),准备让这些进程dump堆栈,从而生成ANR Trace文件
  2. 系统开始向这些进程发送SIGQUIT信号,进程收到SIGQUIT信号之后开始dump堆栈

整个过程的示意图:

ANR流程示意图

图片转自微信客户端技术团队

可以看到,一个进程发生ANR之后的整个流程,只有dump堆栈的行为会发生在发生ANR的进程中,其他过程全在系统进程进行处理的,我们无法感知。这个过程从收到SIGQUIT信号开始到使用socket写Trace结束。然后继续回到系统进程完成剩余的ANR流程,这2个边界上我们可以做做文章。后面我们会详细叙述。

6. ANR监控

Android M(6.0) 版本之后,应用侧无法直接通过监听 data/anr/trace 文件,监控是否发生 ANR。目前了解到的能用的方案主要有下面2种:

6.1 WatchDog

开个子线程,不断往主线程发送消息,并设置超时检测,如果超时还没执行相应消息,则判定为可能发生ANR。需要进一步从系统服务获取相关数据(可通过ActivityManagerService.getProcessesInErrorState()方法获取进程的ANR信息),进一步判定是否真的发生了ANR。

这个方案对应的开源库为ANR-WatchDog,源码比较简单,只有2个源文件。简单解析一下核心代码:


private final Handler _uiHandler = new Handler(Looper.getMainLooper());
private final int _timeoutInterval;
private volatile long _tick = 0;
private volatile boolean _reported = false;private final Runnable _ticker = new Runnable() {@Override public void run() {_tick = 0;_reported = false;}
};@Override
public void run() {setName("|ANR-WatchDog|");//_timeoutInterval为设定的超时时长long interval = _timeoutInterval;while (!isInterrupted()) {//_tick为标志,主线程执行了下面发送的_ticker这个Runnable, 那么_tick就会被置为0boolean needPost = _tick == 0;//在子线程里面需要把标志改为非0,待会儿主线程执行了才知道_tick += interval;if (needPost) {//发个消息给主线程_uiHandler.post(_ticker);}//子线程睡一段时间,起来的时候要是标志位_tick没有被改成0,说明主线程太忙了,或者卡顿了,没来得及执行该消息try {Thread.sleep(interval);} catch (InterruptedException e) {_interruptionListener.onInterrupted(e);return ;}// If the main thread has not handled _ticker, it is blocked. ANR.if (_tick != 0 && !_reported) {//noinspection ConstantConditions//排除debug的情况if (!_ignoreDebugger && (Debug.isDebuggerConnected() || Debug.waitingForDebugger())) {Log.w("ANRWatchdog", "An ANR was detected but ignored because the debugger is connected (you can prevent this with setIgnoreDebugger(true))");_reported = true;continue ;}//可以自定义一个Interceptor告诉watchDog,当前上下文环境是否可以进行上报interval = _anrInterceptor.intercept(_tick);if (interval > 0) {continue;}//上报线程堆栈final ANRError error;if (_namePrefix != null) {error = ANRError.New(_tick, _namePrefix, _logThreadsWithoutStackTrace);} else {error = ANRError.NewMainOnly(_tick);}//回调_anrListener.onAppNotResponding(error);interval = _timeoutInterval;_reported = true;}}
}

核心代码非常简洁,基本上就是上面方案的实现了。有一点需要补充的是,需要进一步从系统服务获取相关数据(可通过ActivityManagerService.getProcessesInErrorState()方法获取进程的ANR信息,具体实现方式下面会详细说明),进一步判定是否真的发生了ANR。可以自定义一个_anrInterceptor,在里面实现这些内容。

6.2 监控SIGQUIT信号

这种方案才是真正的监控ANR,matrix、xCrash都在使用这种方案。已经在国民应用微信等app上检验过,稳定性和可靠性都能得到保证。

在文章上面的ANR流程分析中,我们找到了系统与发生ANR进程之间的边界(即下图中的1和2)。我们能否监听到系统发送给我们的SIGQUIT信号呢?答案当然是可行的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dy174VxF-1669787369951)(https://raw.githubusercontent.com/xfhy/Android-Notes/master/Images/ANR流程示意图.png)]

这里需要一点预备知识,首先我们得知道什么是SIGQUIT信号,前面我们提到了除Zygote进程以外的其他进程都有个Signal Catcher线程在不断地通过sigwait监听SIGQUIT信号,当收到SIGQUIT信号时开始dump线程堆栈。我们需要拦截或者监听SIGQUIT信号,首先需要了解信号处理的相关函数,如kill、signal、sigaction、sigwait、pthread_sigmask等,本文就不详细展开这些函数的具体使用了,如需详细了解,推荐阅读《UNIX环境高级编程》。

下面是我写的监控SIGQUIT信号demo的核心代码,完整源码在这里:

void signalHandler(int sig, siginfo_t *info, void *uc) {__android_log_print(ANDROID_LOG_DEBUG, "xfhy_anr", "我监听到SIGQUIT信号了,可能发生anr了");//在这里去dump主线程堆栈
}extern "C"
JNIEXPORT jboolean JNICALL
Java_com_xfhy_watchsignaldemo_MainActivity_startWatch(JNIEnv *env, jobject thiz) {sigset_t set, old_set;sigemptyset(&set);sigaddset(&set, SIGQUIT);/** 这里需要调用SIG_UNBLOCK,因为目标进程被Zogyte fork出来的时候,主线程继承了* Zogyte的主线程的信号屏蔽关系,Zogyte主线程在初始化的时候,通过* pthread_sigmask SIG_BLOCK把SIGQUIT的信号给屏蔽了,因此我们需要在自己进程的主线程,* 设置pthread_sigmask SIG_UNBLOCK ,这会导致原来的SignalCatcher sigwait将失效,* 原因是SignalCatcher 线程会对SIGQUIT 信号处理*/int r = pthread_sigmask(SIG_UNBLOCK, &set, &old_set);if (0 != r) {return false;}struct sigaction sa{};sa.sa_sigaction = signalHandler;sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTART;return sigaction(SIGQUIT, &sa, nullptr) == 0;
}

Android默认把SIGQUIT设置成了BLOCKED,所以只会响应Signal Catcher线程的sigwait监听SIGQUIT信号,我们用sigaction监听的则收不到,所以这里还需要处理一下。我们通过pthread_sigmask或者sigprocmask把SIGQUIT设置为UNBLOCK,那么再次收到SIGQUIT时,就一定会进入到我们的signalHandler方法中。

除了上面这个之外,还需要注意的是:我们用sigaction抢了Signal Catcher线程的SIGQUIT信号,那Signal Catcher线程就收不到该信号了,那原本的系统dump堆栈的流程就没了,这是不太合适的。所以我们需要将该信号重新发送出去,让Signal Catcher线程接收到该信号。

int tid = getSignalCatcherThreadId(); //遍历/proc/[pid]目录,找到SignalCatcher线程的tid
tgkill(getpid(), tid, SIGQUIT);

以上,咱们得到了一个不改变系统行为的前提下,比较完善的监控SIGQUIT信号的机制,虽然不是特别完美,但这是监控ANR的基础。接下来我们慢慢完善。

6.2.1 完善的ANR监控方案

监控到SIGQUIT信号并不等于就监控到了ANR。

6.2.1.1 误报

发生ANR的进程一定会收到SIGQUIT信号;但是收到SIGQUIT信号的进程并不一定发生了ANR。

可能是下面2种情况:

  1. 其他进程的ANR:发生ANR之后,发生ANR的进程并不是唯一需要dump堆栈的进程,系统会收集许多其他的进程进行dump,也就是说当一个应用发生ANR的时候,其他的应用也有可能收到SIGQUIT信号。所以,我们收到SIGQUIT信号,可能是其他进程发生了ANR,这个时候上报的话就属于是误报了。
  2. 非ANR发送SIGQUIT:发送SIGQUIT信号非常容易,系统和应用级app都能轻易发送SIGQUIT信号:java层调用android.os.Process.sendSignal方法;Native层调用kill或者tgkill方法。我们收到SIGQUIT信号时,可能并非是ANR流程发送的SIGQUIT信号,也会产生误报。

如何解决上面2个误报的问题?回到ANR流程开始的地方细看

//com.android.server.am.ProcessRecord.java
void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,String parentShortComponentName, WindowProcessController parentProcess,boolean aboveSystem, String annotation, boolean onlyDumpSelf) {//......synchronized (mService) {//注意,如果是后台ANR,直接就kill进程然后return了,并不会走到下面的makeAppNotRespondingLocked,当前进程也不会有NOT_RESPONDING这个flagif (isSilentAnr() && !isDebugging()) {kill("bg anr", ApplicationExitInfo.REASON_ANR, true);return;}// Set the app's notResponding state, and look up the errorReportReceivermakeAppNotRespondingLocked(activityShortComponentName,annotation != null ? "ANR " + annotation : "ANR", info.toString());// show ANR dialog ......}
}private void makeAppNotRespondingLocked(String activity, String shortMsg, String longMsg) {setNotResponding(true);// mAppErrors can be null if the AMS is constructed with injector only. This will only// happen in tests.if (mService.mAppErrors != null) {notRespondingReport = mService.mAppErrors.generateProcessError(this,ActivityManager.ProcessErrorStateInfo.NOT_RESPONDING,activity, shortMsg, longMsg, null);}startAppProblemLocked();getWindowProcessController().stopFreezingActivities();
}void setNotResponding(boolean notResponding) {mNotResponding = notResponding;mWindowProcessController.setNotResponding(notResponding);
}

在ANR弹窗前,会执行makeAppNotRespondingLocked方法,在这里会给发生ANR的进程标记一个NOT_RESPONDING的flag,这个flag可以通过ActivityManager来获取:

private static boolean checkErrorState() {try {Application application = sApplication == null ? Matrix.with().getApplication() : sApplication;ActivityManager am = (ActivityManager) application.getSystemService(Context.ACTIVITY_SERVICE);List<ActivityManager.ProcessErrorStateInfo> procs = am.getProcessesInErrorState();if (procs == null) return false;for (ActivityManager.ProcessErrorStateInfo proc : procs) {if (proc.pid != android.os.Process.myPid()) continue;if (proc.condition != ActivityManager.ProcessErrorStateInfo.NOT_RESPONDING) continue;return true;}return false;} catch (Throwable t){MatrixLog.e(TAG,"[checkErrorState] error : %s", t.getMessage());}return false;
}

监控到SIGQUIT后,我们在20秒内(20秒是ANR dump的timeout时间)不断轮询自己是否有NOT_RESPONDING的flag,一旦发现有这个flag,那么马上就可以认定发生了一次ANR。

ps: 你可能会想,有这么方便的方法,监控SIGQUIT信号不是多余么?我直接搞个死循环,不断监听该flag,一旦发现不就监控到ANR了么?可以是可以,但不优雅,而且有缺陷(低效、耗电、不环保、无法解决下面提到的漏报问题)。

6.2.1.2 漏报

进程处于NOT_RESPONDING的状态可以确认该进程发生了ANR。但是发生ANR的进程并不一定会被设置为NOT_RESPONDING状态

下面2种是特殊情况:

  1. 后台ANR(SilentAnr):如果ANR被标记为了后台ANR(即SilentAnr),那么杀死进程后就会直接return,不会执行到makeAppNotRespondingLocked,那么该进程就不会有NOT_RESPONDING这个flag。这意味着,后台的ANR没办法捕捉到,但后台ANR的量也挺大的,并且后台ANR会直接杀死进程,对用户的体验也是非常负面的,这么大一部分ANR监控不到,当然是无法接受的。
  2. 闪退ANR:想当一部分机型(如OPPO、VIVO两家的高Android版本的机型)修改了ANR的流程,即使是发生在前台的ANR,也并不会弹窗,而是直接杀死进程,即闪退。

基于上面2种情况,我们需要一种机制,在收到SIGQUIT信号后,需要非常快速的侦查出自己是否已经处于ANR的状态,进行快速的dump和上报。此时我们可以通过主线程释放处于卡顿状态来判断,怎么快速的知道主线程是否卡住了?可以通过Looper的mMessage对象,该对象的when变量,表示的是当前正在处理的消息入队的时间,我们可以通过when变量减去当前时间,得到的就是等待时间,如果等待时间过长,就说明主线程是处于卡住的状态。这时候收到SIGQUIT信号基本上就可以认为的确发生了一次ANR:

private static boolean isMainThreadStuck(){try {MessageQueue mainQueue = Looper.getMainLooper().getQueue();Field field = mainQueue.getClass().getDeclaredField("mMessages");field.setAccessible(true);final Message mMessage = (Message) field.get(mainQueue);if (mMessage != null) {long when = mMessage.getWhen();if(when == 0) {return false;}long time = when - SystemClock.uptimeMillis();long timeThreshold = BACKGROUND_MSG_THRESHOLD;if (foreground) {timeThreshold = FOREGROUND_MSG_THRESHOLD;}return time < timeThreshold;}} catch (Exception e){return false;}return false;
}

通过上面几种机制来综合判断收到SIGQUIT信号后,是否真的发生了一次ANR,最大程度地减少误报和漏报。

6.2.1.3 获取ANR Trace

回到上面的ANR流程示意图,Signal Catcher线程写Trace也是一个边界,它是通过socket的write方法来写trace的。那我们可以直接hook这里的write,就能直接拿到系统dump的ANR Trace内容。这个内容非常全面,包括了所有线程的各种状态、锁和堆栈(包括native堆栈),对于我们排查问题十分有用,尤其是一些native问题和死锁等问题。native hook采用PLT Hook方案,稳得很,这种方案已经在微信上验证了其稳定性。

int (*original_connect)(int __fd, const struct sockaddr* __addr, socklen_t __addr_length);
int my_connect(int __fd, const struct sockaddr* __addr, socklen_t __addr_length) {if (strcmp(__addr->sa_data, "/dev/socket/tombstoned_java_trace") == 0) {isTraceWrite = true;signalCatcherTid = gettid();}return original_connect(__fd, __addr, __addr_length);
}int (*original_open)(const char *pathname, int flags, mode_t mode);
int my_open(const char *pathname, int flags, mode_t mode) {if (strcmp(pathname, "/data/anr/traces.txt") == 0) {isTraceWrite = true;signalCatcherTid = gettid();}return original_open(pathname, flags, mode);
}ssize_t (*original_write)(int fd, const void* const __pass_object_size0 buf, size_t count);
ssize_t my_write(int fd, const void* const buf, size_t count) {if(isTraceWrite && signalCatcherTid == gettid()) {isTraceWrite = false;signalCatcherTid = 0;char *content = (char *) buf;printAnrTrace(content);}return original_write(fd, buf, count);
}void hookAnrTraceWrite() {int apiLevel = getApiLevel();if (apiLevel < 19) {return;}if (apiLevel >= 27) {plt_hook("libcutils.so", "connect", (void *) my_connect, (void **) (&original_connect));} else {plt_hook("libart.so", "open", (void *) my_open, (void **) (&original_open));}if (apiLevel >= 30 || apiLevel == 25 || apiLevel ==24) {plt_hook("libc.so", "write", (void *) my_write, (void **) (&original_write));} else if (apiLevel == 29) {plt_hook("libbase.so", "write", (void *) my_write, (void **) (&original_write));} else {plt_hook("libart.so", "write", (void *) my_write, (void **) (&original_write));}
}

有几点需要注意:

  1. 只Hook ANR流程:有些情况下,基础库中的connect/open/write方法可能调用的比较频繁,我们需要把hook的影响降到最低。所以我们只会在接收到SIGQUIT信号后(重新发送SIGQUIT信号给Signal Catcher前)进行hook,ANR流程结束后再unhook。
  2. 只处理Signal Catcher线程open/connect后的第一次write:除了Signal Catcher线程中的dump trace的流程,其他地方调用的write方法我们并不关心,并不需要处理。
  3. Hook点因API Level而不同:需要hook的write方法在不同的Android版本中,所在so库也不同,需分别处理。

到此,matrix监控SIGQUIT信号从而监控ANR的方案的核心逻辑已全部呈现,更多详细源码请移步matrix仓库。

总结一下,该方案通过去监听SIGQUIT信号,从而感知当前进程可能发生了ANR,需配合当前进程是否处于NOT_RESPONDING状态以及主线程是否卡顿来进行甄别,以免误判。注册监听SIGQUIT信号之后,系统原来的Signal Catcher线程就监听不到这个信号了,需要把该信号转发出去,让它接收到,以免影响。当前进程的Signal Catcher线程要dump堆栈的时候,会通过socket的write向system server进程进行传输dump好的数据,我们可以hook这个write,从而拿到系统dump好的ANR Trace内容,相当于我们并没有影响系统的任何流程,还拿到了想要拿到的东西。这个方案完全是在系统的正常dump anr trace的过程中获取信息,所以能拿到的东西更加全面,但是系统的dump过程其实是对性能影响比较大的,时间也比较久。

7. ANR分析

监控固然重要,更重要的是分析是什么原因导致的ANR,然后修复好。

7.1 trace文件分析

拿到trace文件,详细分析下:

----- pid 7761 at 2022-11-02 07:02:26 -----
Cmd line: com.xfhy.watchsignaldemo
Build fingerprint: 'HUAWEI/LYA-AL00/HWLYA:10/HUAWEILYA-AL00/10.1.0.163C00:user/release-keys'
ABI: 'arm64'
Build type: optimized
Zygote loaded classes=11918 post zygote classes=729
Dumping registered class loaders
#0 dalvik.system.PathClassLoader: [], parent #1
#1 java.lang.BootClassLoader: [], no parent
#2 dalvik.system.PathClassLoader: [/system/app/FeatureFramework/FeatureFramework.apk], no parent
#3 dalvik.system.PathClassLoader: [/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes2.dex:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes4.dex:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes3.dex], parent #1
Done dumping class loaders
Intern table: 44132 strong; 436 weak
JNI: CheckJNI is off; globals=681 (plus 67 weak)
Libraries: /data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/lib/arm64/libwatchsignaldemo.so libandroid.so libcompiler_rt.so libhitrace_jni.so libhiview_jni.so libhwapsimpl_jni.so libiAwareSdk_jni.so libimonitor_jni.so libjavacore.so libjavacrypto.so libjnigraphics.so libmedia_jni.so libopenjdk.so libsoundpool.so libwebviewchromium_loader.so (15)
//已分配堆内存大小26M,其中2442kb医用,总分配74512个对象
Heap: 90% free, 2442KB/26MB; 74512 objectsTotal number of allocations 120222 //进程创建到现在一共创建了多少对象
Total bytes allocated 10MB         //进程创建到现在一共申请了多少内存
Total bytes freed 8173KB           //进程创建到现在一共释放了多少内存
Free memory 23MB                   //不扩展堆的情况下可用的内存
Free memory until GC 23MB          //GC前的可用内存
Free memory until OOME 381MB       //OOM之前的可用内存,这个值很小的话,说明已经处于内存紧张状态,app可能是占用了过多的内存
Total memory 26MB                  //当前总内存(已用+可用)
Max memory 384MB                   //进程最多能申请的内存.....//省略GC相关信息//当前进程共17个线程
DALVIK THREADS (17)://Signal Catcher线程调用栈
"Signal Catcher" daemon prio=5 tid=4 Runnable| group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800| sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50| state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100| stack=0x7253454000-0x7253456000 stackSize=991KB| held mutexes= "mutator lock"(shared held)native: #00 pc 000000000042f8e8  /apex/com.android.runtime/lib64/libart.so (art::DumpNativeStack(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, int, BacktraceMap*, char const*, art::ArtMethod*, void*, bool)+140)native: #01 pc 0000000000523590  /apex/com.android.runtime/lib64/libart.so (art::Thread::DumpStack(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, bool, BacktraceMap*, bool) const+508)native: #02 pc 000000000053e75c  /apex/com.android.runtime/lib64/libart.so (art::DumpCheckpoint::Run(art::Thread*)+844)native: #03 pc 000000000053735c  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::RunCheckpoint(art::Closure*, art::Closure*)+504)native: #04 pc 0000000000536744  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::Dump(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, bool)+1048)native: #05 pc 0000000000536228  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::DumpForSigQuit(std::__1::basic_ostream<char, std::__1::char_traits<char>>&)+884)native: #06 pc 00000000004ee4d8  /apex/com.android.runtime/lib64/libart.so (art::Runtime::DumpForSigQuit(std::__1::basic_ostream<char, std::__1::char_traits<char>>&)+196)native: #07 pc 000000000050250c  /apex/com.android.runtime/lib64/libart.so (art::SignalCatcher::HandleSigQuit()+1356)native: #08 pc 0000000000501558  /apex/com.android.runtime/lib64/libart.so (art::SignalCatcher::Run(void*)+268)native: #09 pc 00000000000cf7c0  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)+36)native: #10 pc 00000000000721a8  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64)(no managed stack frames)"main" prio=5 tid=1 Sleeping| group="main" sCount=1 dsCount=0 flags=1 obj=0x73907540 self=0x725f010800| sysTid=7761 nice=-10 cgrp=default sched=1073741825/2 handle=0x72e60080d0| state=S schedstat=( 281909898 5919799 311 ) utm=20 stm=7 core=4 HZ=100| stack=0x7fca180000-0x7fca182000 stackSize=8192KB| held mutexes=at java.lang.Thread.sleep(Native method)- sleeping on <0x00f895d9> (a java.lang.Object)at java.lang.Thread.sleep(Thread.java:443)- locked <0x00f895d9> (a java.lang.Object)at java.lang.Thread.sleep(Thread.java:359)at android.os.SystemClock.sleep(SystemClock.java:131)at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:35)at java.lang.reflect.Method.invoke(Native method)at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)at android.view.View.performClick(View.java:7317)at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)at android.view.View.performClickInternal(View.java:7291)at android.view.View.access$3600(View.java:838)at android.view.View$PerformClick.run(View.java:28247)at android.os.Handler.handleCallback(Handler.java:900)at android.os.Handler.dispatchMessage(Handler.java:103)at android.os.Looper.loop(Looper.java:219)at android.app.ActivityThread.main(ActivityThread.java:8668)at java.lang.reflect.Method.invoke(Native method)at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)... //此处省略剩余的N个线程

trace参数详细解读:

"Signal Catcher" daemon prio=5 tid=4 Runnable| group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800| sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50| state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100| stack=0x7253454000-0x7253456000 stackSize=991KB| held mutexes= "mutator lock"(shared held)

第1行:

"Signal Catcher" daemon prio=5 tid=4 Runnable

  • “Signal Catcher” daemon : 线程名,有daemon表示守护线程
  • prio:线程优先级
  • tid:线程内部id
  • 线程状态:Runnable

ANR线程状态对照表

ps: 一般来说:main线程处于BLOCK、WAITING、TIMEWAITING状态,基本上是函数阻塞导致的ANR,如果main线程无异常,则应该排查CPU负载和内存环境。

第2行:

| group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800

  • group:线程所属的线程组
  • sCount:线程挂起次数
  • dsCount:用于调试的线程挂起次数
  • obj:当前线程关联的Java线程对象
  • self:当前线程地址

第3行:

| sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50

  • sysTid:线程真正意义上的tid
  • nice:调度优先级,值越小则优先级越高
  • cgrp:进程所属的进程调度组
  • sched:调度策略
  • handle:函数处理地址

第4行:

| state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100

  • state:线程状态
  • schedstat:CPU调度时间统计(schedstat括号中的3个数字依次是Running、Runable、Switch,Running时间:CPU运行的时间,单位ns,Runable时间:RQ队列的等待时间,单位ns,Switch次数:CPU调度切换次数)
  • utm/stm:用户态/内核态的CPU时间
  • core:该线程的最后运行所在核
  • HZ:时钟频率

第5行:

| stack=0x7253454000-0x7253456000 stackSize=991KB

  • stack:线程栈的地址区间
  • stackSize:栈的大小

第6行:

| held mutexes= "mutator lock"(shared held)

  • mutex:所持有mutex类型,有独占锁exclusive和共享锁shared两类

7.2 ANR案例分析

7.2.1 主线程无卡顿,处于正常状态堆栈

"main" prio=5 tid=1 Native| group="main" sCount=1 dsCount=0 flags=1 obj=0x74b38080 self=0x7ad9014c00| sysTid=23081 nice=0 cgrp=default sched=0/0 handle=0x7b5fdc5548| state=S schedstat=( 284838633 166738594 505 ) utm=21 stm=7 core=1 HZ=100| stack=0x7fc95da000-0x7fc95dc000 stackSize=8MB| held mutexes=kernel: __switch_to+0xb0/0xbckernel: SyS_epoll_wait+0x288/0x364kernel: SyS_epoll_pwait+0xb0/0x124kernel: cpu_switch_to+0x38c/0x2258native: #00 pc 000000000007cd8c  /system/lib64/libc.so (__epoll_pwait+8)native: #01 pc 0000000000014d48  /system/lib64/libutils.so (android::Looper::pollInner(int)+148)native: #02 pc 0000000000014c18  /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+60)native: #03 pc 00000000001275f4  /system/lib64/libandroid_runtime.so (android::android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int)+44)at android.os.MessageQueue.nativePollOnce(Native method)at android.os.MessageQueue.next(MessageQueue.java:330)at android.os.Looper.loop(Looper.java:169)at android.app.ActivityThread.main(ActivityThread.java:7073)at java.lang.reflect.Method.invoke(Native method)at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:536)at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:876)

比如这个主线程堆栈,看起来很正常,主线程是空闲的,因为它正处于nativePollOnce,正在等待新消息。处于这个状态,那还发生了ANR,可能有2个原因:

  1. dump堆栈时机太晚了,ANR已经发生过了,才去dump堆栈,此时主线程已经恢复正常了
  2. CPU抢占或者内存紧张等其他因素引起

遇到这种情况,要先去分析CPU、内存的使用情况。其次可以关注抓取日志的时间和ANR发生的时间是否相隔太久,时间太久这个堆栈就没有分析的意义了。

7.2.2 主线程执行耗时操作

//模拟主线程耗时操作,View点击的时候调用这个函数
fun makeAnr(view: View) {var s = 0Lfor (i in 0..99999999999) {s += i}Log.d("xxx", "s=$s")
}

当主线程执行到makeAnr时,会因为里面的东西执行太耗时而一直在这里进行计算,假设此时有其他事情要想交给主线程处理,则必须得等到makeAnr函数执行完才行。主线程在执行makeAnr时,输入事件无法被处理,用户多次点击屏幕之后,就会输入超时,触发InputEvent Timeout,导致ANR。而如果主线程在执行上面这段耗时操作的过程中,没有其他事情需要处理,那其实是不会发生ANR的。

suspend all histogram:	Sum: 206us 99% C.I. 0.098us-46us Avg: 7.629us Max: 46us
DALVIK THREADS (16):
"main" prio=5 tid=1 Runnable| group="main" sCount=0 dsCount=0 flags=0 obj=0x73907540 self=0x725f010800| sysTid=32298 nice=-10 cgrp=default sched=1073741825/2 handle=0x72e60080d0| state=R schedstat=( 6746757297 5887495 256 ) utm=670 stm=4 core=6 HZ=100| stack=0x7fca180000-0x7fca182000 stackSize=8192KB| held mutexes= "mutator lock"(shared held)at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:58)at java.lang.reflect.Method.invoke(Native method)at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)at android.view.View.performClick(View.java:7317)at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)at android.view.View.performClickInternal(View.java:7291)at android.view.View.access$3600(View.java:838)at android.view.View$PerformClick.run(View.java:28247)at android.os.Handler.handleCallback(Handler.java:900)at android.os.Handler.dispatchMessage(Handler.java:103)at android.os.Looper.loop(Looper.java:219)at android.app.ActivityThread.main(ActivityThread.java:8668)at java.lang.reflect.Method.invoke(Native method)at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)

从日志上看,主线程处于执行状态,不是空闲状态,导致ANR了,说明com.xfhy.watchsignaldemo.MainActivity.makeAnr这里有耗时操作。

7.2.3 主线程被锁阻塞

模拟主线程等待子线程的锁:

fun makeAnr(view: View) {val obj1 = Any()val obj2 = Any()//搞个死锁,相互等待thread(name = "卧槽") {synchronized(obj1) {SystemClock.sleep(100)synchronized(obj2) {}}}synchronized(obj2) {SystemClock.sleep(100)synchronized(obj1) {}}
}
"main" prio=5 tid=1 Blocked| group="main" sCount=1 dsCount=0 flags=1 obj=0x73907540 self=0x725f010800| sysTid=19900 nice=-10 cgrp=default sched=0/0 handle=0x72e60080d0| state=S schedstat=( 542745832 9516666 182 ) utm=48 stm=5 core=4 HZ=100| stack=0x7fca180000-0x7fca182000 stackSize=8192KB| held mutexes=at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:59)- waiting to lock <0x0c6f8c52> (a java.lang.Object) held by thread 22   //注释1- locked <0x01abeb23> (a java.lang.Object)at java.lang.reflect.Method.invoke(Native method)at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)at android.view.View.performClick(View.java:7317)at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)at android.view.View.performClickInternal(View.java:7291)at android.view.View.access$3600(View.java:838)at android.view.View$PerformClick.run(View.java:28247)at android.os.Handler.handleCallback(Handler.java:900)at android.os.Handler.dispatchMessage(Handler.java:103)at android.os.Looper.loop(Looper.java:219)at android.app.ActivityThread.main(ActivityThread.java:8668)at java.lang.reflect.Method.invoke(Native method)at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)"卧槽" prio=5 tid=22 Blocked  //注释2| group="main" sCount=1 dsCount=0 flags=1 obj=0x12c8a118 self=0x71d625f800| sysTid=20611 nice=0 cgrp=default sched=0/0 handle=0x71d4513d50| state=S schedstat=( 486459 0 3 ) utm=0 stm=0 core=4 HZ=100| stack=0x71d4411000-0x71d4413000 stackSize=1039KB| held mutexes=at com.xfhy.watchsignaldemo.MainActivity$makeAnr$1.invoke(MainActivity.kt:52)- waiting to lock <0x01abeb23> (a java.lang.Object) held by thread 1- locked <0x0c6f8c52> (a java.lang.Object)  at com.xfhy.watchsignaldemo.MainActivity$makeAnr$1.invoke(MainActivity.kt:49)at kotlin.concurrent.ThreadsKt$thread$thread$1.run(Thread.kt:30)......

注意看,下面几行:

"main" prio=5 tid=1 Blocked- waiting to lock <0x0c6f8c52> (a java.lang.Object) held by thread 22- locked <0x01abeb23> (a java.lang.Object)"卧槽" prio=5 tid=22 Blocked- waiting to lock <0x01abeb23> (a java.lang.Object) held by thread 1- locked <0x0c6f8c52> (a java.lang.Object)  

主线程的tid是1,线程状态是Blocked,正在等待0x0c6f8c52这个Object,而这个Object被thread 22这个线程所持有,主线程当前持有的是0x01abeb23的锁。而卧槽的tid是22,也是Blocked状态,它想请求的和已有的锁刚好与主线程相反。这样的话,ANR原因也就找到了:线程22持有了一把锁,并且一直不释放,主线程等待这把锁发生超时。在线上环境,常见因锁而ANR的场景是SharePreference写入。

7.2.4 CPU被抢占

CPU usage from 0ms to 10625ms later (2020-03-09 14:38:31.633 to 2020-03-09 14:38:42.257):543% 2045/com.test.demo: 54% user + 89% kernel / faults: 4608 minor 1 major //注意看这里99% 674/android.hardware.camera.provider@2.4-service: 81% user + 18% kernel / faults: 403 minor24% 32589/com.wang.test: 22% user + 1.4% kernel / faults: 7432 minor 1 major......

可以看到,该进程占据CPU高达543%,抢占了大部分CPU资源,因为导致发生ANR,这种ANR与我们的app无关。

7.2.5 内存紧张导致ANR

如果一份ANR日志的CPU和堆栈都很正常,可以考虑是内存紧张。看一下ANR日志里面的内存相关部分。还可以去日志里面搜一下onTrimMemory,如果dump ANR日志的时间附近有相关日志,可能是内存比较紧张了。

10-31 22:37:19.749 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:37:33.458 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:38:00.153 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:38:58.731 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:39:02.816 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0

7.2.6 系统服务超时导致ANR

系统服务超时一般会包含BinderProxy.transactNative关键字,来看一段日志:

"main" prio=5 tid=1 Native| group="main" sCount=1 dsCount=0 flags=1 obj=0x727851e8 self=0x78d7060e00| sysTid=4894 nice=0 cgrp=default sched=0/0 handle=0x795cc1e9a8| state=S schedstat=( 8292806752 1621087524 7167 ) utm=707 stm=122 core=5 HZ=100| stack=0x7febb64000-0x7febb66000 stackSize=8MB| held mutexes=kernel: __switch_to+0x90/0xc4kernel: binder_thread_read+0xbd8/0x144ckernel: binder_ioctl_write_read.constprop.58+0x20c/0x348kernel: binder_ioctl+0x5d4/0x88ckernel: do_vfs_ioctl+0xb8/0xb1ckernel: SyS_ioctl+0x84/0x98kernel: cpu_switch_to+0x34c/0x22c0native: #00 pc 000000000007a2ac  /system/lib64/libc.so (__ioctl+4)native: #01 pc 00000000000276ec  /system/lib64/libc.so (ioctl+132)native: #02 pc 00000000000557d4  /system/lib64/libbinder.so (android::IPCThreadState::talkWithDriver(bool)+252)native: #03 pc 0000000000056494  /system/lib64/libbinder.so (android::IPCThreadState::waitForResponse(android::Parcel*, int*)+60)native: #04 pc 00000000000562d0  /system/lib64/libbinder.so (android::IPCThreadState::transact(int, unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+216)native: #05 pc 000000000004ce1c  /system/lib64/libbinder.so (android::BpBinder::transact(unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+72)native: #06 pc 00000000001281c8  /system/lib64/libandroid_runtime.so (???)native: #07 pc 0000000000947ed4  /system/framework/arm64/boot-framework.oat (Java_android_os_BinderProxy_transactNative__ILandroid_os_Parcel_2Landroid_os_Parcel_2I+196)at android.os.BinderProxy.transactNative(Native method) ————————————————关键行!!!at android.os.BinderProxy.transact(Binder.java:804)at android.net.IConnectivityManager$Stub$Proxy.getActiveNetworkInfo(IConnectivityManager.java:1204)—关键行!at android.net.ConnectivityManager.getActiveNetworkInfo(ConnectivityManager.java:800)at com.xiaomi.NetworkUtils.getNetworkInfo(NetworkUtils.java:2)at com.xiaomi.frameworkbase.utils.NetworkUtils.getNetWorkType(NetworkUtils.java:1)at com.xiaomi.frameworkbase.utils.NetworkUtils.isWifiConnected(NetworkUtils.java:1)

从日志堆栈中可以看到是获取网络信息发生了ANR:getActiveNetworkInfo。系统的服务都是Binder机制(16个线程),服务能力也是有限的,有可能系统服务长时间不响应导致ANR。如果其他应用占用了所有Binder线程,那么当前应用只能等待。可进一步搜索:blockUntilThreadAvailable关键字:

at android.os.Binder.blockUntilThreadAvailable(Native method)

如果有发现某个线程的堆栈,包含此字样,可进一步看其堆栈,确定是调用了什么系统服务。此类ANR也是属于系统环境的问题,如果某类型手机上频繁发生此问题,应用层可以考虑规避策略。

8. ANR影响因素

即使我们利用上面的一系列骚操作,在发生ANR时,我们拿到了Trace堆栈。但实际情况下这些Trace堆栈中,有很多不是导致ANR的根本原因。Trace堆栈提示某个Service或Receiver导致的ANR,但其实很可能并不是这些组件自身的问题导致的ANR,至于为什么,下面一一道来。

影响ANR的本质要素大体来说分为2个:应用内部环境和系统环境。当系统负载正常,但是应用内部主线程消息过多或耗时验证;另外一类是系统或应用内部其他线程或资源负载过高,主线程调度被严重抢占。

系统负载高咱们没有办法,但系统负载正常时,主线程的调度问题主要有下面几个:

  1. 当前Trace堆栈所在业务耗时严重
  2. 当前Trace堆栈所在业务耗时并不严重,但历史调度有一个严重耗时
  3. 当前Trace堆栈所在业务耗时并不严重,但历史调度有多个消息耗时
  4. 当前Trace堆栈所在业务耗时并不严重,但是历史调度存在巨量重复消息(业务频繁发送消息)
  5. 当前Trace堆栈业务逻辑并不耗时,但是其他线程存在严重资源抢占,如IO、Mem、CPU;
  6. 当前Trace堆栈业务逻辑并不耗时,但是其他进程存在严重资源抢占,如IO、Mem、CPU。

请注意,这里的6个影响因素中,除了第一个以外,其他的根据ANR Trace有可能无法进行判别。这就会导致很多时候看到的ANR Trace里面主线程堆栈对应的业务其实并不耗时(因为可能是前面的消息导致的耗时,但它已经执行完了),如何解决这个问题?

9. 弥补不足

字节跳动内部有一个监控工具:Raster,这个库专门解决上面的问题。有一点可惜的是该工具暂时还没开源,但是我们从字节发出来的Raster原理相关的文章能了解到该库的详细原理。原文 : 今日头条 ANR 优化实践系列 - 监控工具与分析思路

Raster的大致原理:该工具主要是在主线程消息调度过程进行监控,并按照一定的策略聚合,以保证监控工具本身对应用性能和内存抖动影响降至最低。比较耗时的消息会抓取主线从堆栈,这样可以知道那个耗时的消息具体是在干什么,从而针对性优化。同时对应用四大组件消息执行过程进行监控,便于对这类消息的调度及耗时情况进行跟踪和记录。另外对当前正在调度的消息及消息队列中待调度消息进行统计,从而在发生问题时,可以回放主线程的整体调度情况。此外,该库将系统服务的CheckTime机制迁移到应用侧,应用为线程CheckTime机制,以便于系统信息不足时,从线程调度及时性推测过去一段时间系统负载和调度情况。因此该工具用一句话来概括就是:由点到面,回放过去,现在和将来。

细说一下线程 Checktime:通过借助其他子线程的周期检测机制,在每次调度前获取当前系统时间,然后减去我们设置延迟的时间,即可得到本次线程调度前的真实间隔时间,如设置线程每隔300ms调度一次,结果发现实际响应时间间隔有时会超过300ms,如果偏差越大则说明线程没有及时调度,进一步反映系统响应能力变差。通过这样的方式,即使线上环境获取不到系统日志,也可以从侧面反映不同时段系统负载对线程调度影响。当连续发生多次严重Delay时,说明线程调度受到了影响。

通过上诉监控能力,我们就可以清晰的知道ANR发生时主线程历史消息调度以及耗时严重消息的采样堆栈,同时可以知道正在执行消息的耗时,以及消息队列中调度消息的状态。同时通过线程CheckTime机制从侧面反映线程调度响应能力,由此完成了应用侧监控信息从点到面的覆盖。

有大佬根据该文章的原理实现了一个类似的开源库: MoonlightTreasureBox,MoonlightTreasureBox 开源地址。

10. QA

10.1 在Activity#onCreate中sleep会导致ANR吗?

不会,ANR的场景只有下面4种:Service Timeout、BroadcastQueue Timeout、ContentProvider Timeout、InputDispatching Timeout。

当然,如果在Activity#onCreate中sleep的过程中,用户点击了屏幕,那是有可能触发InputDispatching Timeout的。

11. 小结

很荣幸地恭喜你,读完了整篇文章。

ANR是老生常谈的问题了,本文从定义、原因、发生场景、触发流程、监控与分析等多方面入手,尽力补全ANR这块的知识。

ANR的发生场景只有4种:Service Timeout、BroadcastQueue Timeout、ContentProvider Timeout、InputDispatching Timeout,但导致ANR的原因是多种多样的,可能是App这边导致的,也可能是系统那边导致的。触发ANR的过程大致又可以分为2种,一种是Service、Broadcast、Provider触发ANR:埋炸弹、拆炸弹、引爆炸弹,另外一种是Input触发ANR:处理后续时检测之前的。触发ANR之后,会走dump ANR Trace的流程,收集相关进程的堆栈信息写入文件。我们可以监听SIGQUIT信号,感知到系统在走dump ANR Trace的流程,我们可以进一步确认一下当前进程是否处于ANR的状态,然后通过hook系统与App的边界,从而通过socket拿到系统dump好的ANR Trace内容。拿到ANR Trace内容之后,当然就是分析了,详细请看文章。但是有时候,拿到的ANR Trace并不能把真正的ANR原因给分析出来,这时就得上字节内部的大杀器了:Raster,虽然暂时还没开源,但字节已将其原理一五一十的分享出来了。Raster主要是能知道主线程的消息调度在过去、现在、将来的具体情况,配合线程 CheckTime 感知线程调度能力,要比单单分析 ANR Trace要方便很多。

12. 资料

感谢以下所有大佬的精彩文章。

  • 卡顿、ANR、死锁,线上如何监控? https://juejin.cn/post/6973564044351373326#heading-34
  • 你管这破玩意叫 IO 多路复用?https://mp.weixin.qq.com/s?__biz=Mzk0MjE3NDE0Ng==&mid=2247494866&idx=1&sn=0ebeb60dbc1fd7f9473943df7ce5fd95&chksm=c2c5967ff5b21f69030636334f6a5a7dc52c0f4de9b668f7bac15b2c1a2660ae533dd9878c7c&mpshare=1&scene=1&srcid=04239yXVUr6ekmLg7ZSKlFpa&sharer_sharetime=1619147468052&sharer_shareid=2498540345d210ebc4198a40ae94e9ec#rd
  • epoll或者kqueue的原理是什么? https://www.zhihu.com/question/20122137/answer/14049112
  • Gityuan 理解Android ANR的信息收集过程 http://gityuan.com/2016/12/02/app-not-response/
  • Gityuan 理解Android ANR的触发原理 http://gityuan.com/2016/07/02/android-anr
  • Gityuan Input系统—ANR原理分析 http://gityuan.com/2017/01/01/input-anr/
  • Gityuan 彻底理解安卓应用无响应机制 http://gityuan.com/2019/04/06/android-anr/
  • Gityuan Input系统—事件处理全过程 http://gityuan.com/2016/12/31/input-ipc/
  • 微信Android客户端的卡顿监控方案 https://mp.weixin.qq.com/s/3dubi2GVW_rVFZZztCpsKg
  • Touch事件如何传递到Activity https://www.jianshu.com/p/7d442ed0a355
  • 浅析 Android 输入事件处理(一) https://zhuanlan.zhihu.com/p/26893970
  • 【Android】事件处理系统 https://www.cnblogs.com/lcw/p/3373214.html
  • Android 输入系统 & ANR机制的设计与实现 https://mp.weixin.qq.com/s/OyyP_BQqz0gLOfmZffoD1A
  • Android PLT hook 概述 https://github.com/iqiyi/xHook/blob/master/docs/overview/android_plt_hook_overview.zh-CN.md
  • Android 输入系统 & ANR机制的设计与实现 https://mp.weixin.qq.com/s/OyyP_BQqz0gLOfmZffoD1A
  • 今日头条 ANR 优化实践系列 - 设计原理及影响因素 https://mp.weixin.qq.com/s/ApNSEWxQdM19QoCNijagtg
  • 今日头条 ANR 优化实践系列 - 监控工具与分析思路 https://mp.weixin.qq.com/s/_Z6GdGRVWq-_JXf5Fs6fsw
  • Matrix - ANR 原理解析 https://www.dalvik.work/2021/12/03/matrix-anr/
  • 西瓜视频稳定性治理体系建设三:Sliver 原理及实践https://mp.weixin.qq.com/s/LW3eMK9O2tfFtZcu5eqitg (这篇文章提到,looper消息分发和监控Signal信号有可能无法监控到真正的ANR,可能dump堆栈时已经错过真正的时机,需要获取到dump堆栈时的前面的消息堆栈,好像matrix有,到时看一下)
  • 西瓜卡顿 & ANR 优化治理及监控体系建设 https://mp.weixin.qq.com/s/2sjG5qkrUNQsI0jEsnh4kQ
  • 微信Android客户端的ANR监控方案 监控signal信号 https://blog.csdn.net/stone_cold_cool/article/details/119464855
  • 今日头条 ANR 优化实践系列分享 - 实例剖析集锦 https://mp.weixin.qq.com/s/4-_SnG4dfjMnkrb3rhgUag
  • 今日头条 ANR 优化实践系列 - Barrier 导致主线程假死 https://mp.weixin.qq.com/s/OBYWrUBkWwV8o6ChSVaCvw
  • 今日头条 ANR 优化实践系列 - 告别 SharedPreference 等待 https://mp.weixin.qq.com/s/kfF83UmsGM5w43rDCH544g
  • 理解杀进程的实现原理 - Gityuan博客 | 袁辉辉的技术博客
  • 理解Android进程创建流程 - Gityuan博客 | 袁辉辉的技术博客
  • 「ANR」Android SIGQUIT(3) 信号拦截与处理_阿里巴巴终端技术的博客-CSDN博客
  • 干货:ANR日志分析全面解析 https://zhuanlan.zhihu.com/p/378902923
  • Android ANR https://www.jianshu.com/p/487771a67d1b

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_227973.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大客车玻璃擦净器设计

目 录 摘 要 I ABSTRACT II 1 绪论 1 1.1选题背景及意义 1 1.2发展现状 2 1.3发展趋势 3 1.4研究主要内容 4 2 大客车玻璃擦净器总体方案设计 5 2.1 大客车玻璃擦净器设计思想 5 2.2功能分析 5 2.3工作原理分析 6 2.4功能分解 6 2.4.2传动系统 6 2.4.3真空吸盘 7 2.4.4 清洁刷 …

欢聚季报图解:营收5.87亿美元同比降10% 净利提升

雷递网 雷建平 11月29日欢聚集团(NASDAQ: YY)今日发布2022年第三季度财报。财报显示&#xff0c;欢聚集团2022年第三季度营收为5.867亿美元&#xff0c;较上年同期下降10%。欢聚集团2022年第三季度Bigo Live的平均移动MAU为3540万&#xff0c;较上年同期的3100万增长14.2%&…

转铁蛋白修饰的去氢骆驼蓬碱磁纳米脂质体TF-HM-MPS

转铁蛋白又名运铁蛋白&#xff08;Transferrin&#xff0c;TRF、Tf&#xff09;&#xff0c;负责运载由消化管吸收的铁和由红细胞降解释放的铁。以三价铁复合物&#xff08;Tf-Fe3&#xff09;的形式进入骨髓中&#xff0c;供成熟红细胞的生成。转铁蛋白主要存在于血浆中&#…

冒烟测试的7个好处,你是否经常用到它?

以下为作者观点&#xff1a; 冒烟测试(smoke testing)是在开发的早期阶段评估基本的软件组件&#xff0c;以检查它们是否 “着火”&#xff08;有问题&#xff09;&#xff0c;本文旨在介绍冒烟测试及其在程序开发过程中的作用。 什么是冒烟测试&#xff1f; 冒烟测试是在开…

企业日常公关如何抵御负面信息的入侵?

如今&#xff0c;互联网时代信息传播速度极快&#xff0c;这使得宣传工作效率倍增&#xff0c;也给企业舆情管理带来一定的挑战。舆情优化搞得好&#xff0c;企业宣传工作事半功倍&#xff0c;网络舆论走向负面的话&#xff0c;则对宣传工作非常不利&#xff0c;会导致推广效果…

狂神说Go语言学习笔记(一)

一、Go语言的发展史 二、Go语言能做什么 三、Go语言环境安装 下载地址 国外网站太慢&#xff0c;我们使用中文网进行下载&#xff01; Go下载 - Go语言中文网 - Golang中文社区 (studygolang.com) 安装 无脑下一步就完了 &#xff0c;注意下这里创建自己设置一个Go语言的环…

比搞笑诺奖还离谱,看完国产AIGC最新创作,把我给整不会了

杨净 萧箫 发自 凹非寺量子位 | 公众号 QbitAI现在&#xff0c;AI生成的东西&#xff0c;“真实”得都让我有点害怕了——只是给出《马斯克获得诺贝尔物理学奖》这个标题&#xff0c;AI竟然就刷刷刷几下&#xff0c;蹦出了一整套大纲来&#xff1f;&#xff01;如果让AI生成一些…

计算机网络——分层结构,协议接口,服务

分层结构 主机进行资源共享时需满足以下条件&#xff1a; &#xff08;1&#xff09;发起通信的计算机要将数据通路进行激活 &#xff08;2&#xff09;告诉网络如何识别主机 &#xff08;3&#xff09;发起通信的主机要查明目的主机是否开机等 &#xff08;4&#xff09;发起…

【Linux】权限讲解

一、什么是权限 1、权限概念 权限随处可见&#xff0c;在生活中&#xff0c;腾讯非VIP用户不能观看VIP视频&#xff0c;看小说也需要会员&#xff0c;所以权限是限制人的&#xff0c;一件事是否允许被谁做。在Linux系统中也有许多权限&#xff0c;访问文件需要权限&#xff0c…

Windows OpenGL 图像色彩替换

目录 一.OpenGL 图像色彩替换 1.原始图片2.效果演示 二.OpenGL 图像色彩替换源码下载三.猜你喜欢 零基础 OpenGL ES 学习路线推荐 : OpenGL ES 学习目录 >> OpenGL ES 基础 零基础 OpenGL ES 学习路线推荐 : OpenGL ES 学习目录 >> OpenGL ES 特效 零基础 OpenGL…

[附源码]Python计算机毕业设计Django的实验填报管理系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;我…

FastDFS文件上传

分布式文件存储-FastDFS 介绍 FastDFS为互联网量身定制&#xff0c;充分考虑了冗余备份、负载均衡、线性扩容等机制&#xff0c;并注重高可用、高性能等指标&#xff0c;使用FastDFS很容易搭建一套高性能的文件服务器集群提供文件上传、下载等服务。 FastDFS体系结构 FastD…

基于改进粒子群算法的微电网多目标优化调度(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

62 - 单例类模板

---- 整理自狄泰软件唐佐林老师课程 1. 单例模式 1.1 需求的提出 在架构设计时&#xff0c;某些类 在整个系统生命期中 最多只能有一个对象存在&#xff08;Single Instance&#xff09; 1.1.1 问题 如何定义一个类&#xff0c;使得这个类最多只能创建一个对象&#xff1f;…

模拟电路设计(35)---几种脉宽调制型开关电路

Forward单端正激变换器 在buck变换器开关与负载之间插入隔离变压器&#xff0c;这种隔离型buck变换器叫做Forward单端正激变换器。如下图所示&#xff1a; Forward单端正激变换器 简单分析可知&#xff0c;滤波电感L在开关管关断期间&#xff0c;通过续流二极管为负载提供电流…

【手把手】教你玩转SpringCloud Alibaba之Nacos Config深入

1、不同环境相同配置问题-自定义Data ID配置 在实际的开发过程中&#xff0c;项目所用到的配置参数有的时候并不需要根据不同的环境进行区分&#xff0c;生产、测试、开发环境所用到的参数值是相同的。怎么解决同一服务在多环境中&#xff0c;引用相同的配置的问题&#xff1f…

Flutter 离线数据方案 Flutter_Data 包

Flutter 离线数据方案 Flutter_Data 包 原文 https://levelup.gitconnected.com/flutter-offline-first-with-flutter-data-62bad61097be 前言 通过离线优先来改善您的用户体验 Flutter Data 是一个让你的应用程序先离线的软件包。 离线时&#xff0c;它在设备上使用 Hive 存储…

H2N-Hyp-FF-OH, 2493080-84-3

Hyp-Phe-Phe 是一种三肽&#xff0c;通过 Phe 环的芳香相互作用形成螺旋状的薄片&#xff0c;构成一个交叉螺旋结构。Hyp-Phe-Phe 具有很高的剪切压电特性&#xff0c;可作为一种压电材料。Hyp-Phe-Phe is a tripeptide that forms helical-like sheets via aromatic interacti…

天翎知识文档系统+群晖NAS,助力企业实现移动化学习

编者按&#xff1a;移动化学习成为一种社会发展趋势&#xff0c;本文分析了企业移动化学习的意义&#xff0c;并提出了企业移动化学习的一款全新解决方案——天翎知识文档系统群晖NAS。 关键词&#xff1a;多端适配&#xff0c;学习培训&#xff0c;智能问答&#xff0c;在线预…

计算机内存与外存的区别及使用配合(内存外存区别与搭配;快速缓存;计算机总线结构)

计算机系统结构1. 为什么计算机存储会分为内存和外存呢&#xff1f;2. 关于快速缓存3. 计算机总线结构1. 为什么计算机存储会分为内存和外存呢&#xff1f; 外部储存器断电可以存储数据&#xff0c;但是读写速度相对于cpu来说很慢&#xff0c;而内存虽然读取速度很快但是断电之…