​​Linux 信号量​​​​

news/2024/5/19 9:22:57/文章来源:https://blog.csdn.net/qq_59293418/article/details/132394331

 


信号量的产生原因

我们将可能会被多个执行流同时访问的资源叫做临界资源,临界资源需要进行保护否则会出现数据不一致等问题。

当我们仅用一个互斥锁对临界资源进行保护时,相当于我们将这块临界资源看作一个整体,同一时刻只允许一个执行流对这块临界资源进行访问。

但实际我们可以将这块临界资源再分割为多个区域,当多个执行流需要访问临界资源时,如果这些执行流访问的是临界资源的不同区域,那么我们可以让这些执行流同时访问临界资源的不同区域,此时不会出现数据不一致等问题。

举个栗子:

假设临界资源是一块数组:

vector<int>nums(5,1)

 互斥锁的要求是只能访问这个数组nums,信息量可以允许A执行流访问nums[1];B执行流访问nums[2],只要下标是不一样的,其他执行流都可以访问数组nums。

信号量的概念

信号量又叫做信号灯,其本质是一个支持PV操作的计数器。POSIX信号量和SystemV信号量作用相同,都是用于同步操作,达到无冲突的访问共享资源目的。 但POSIX可以用于线程间同步。

信号量函数

初始化

SEM_INIT(3)                     Linux Programmer's Manual                    SEM_INIT(3)NAMEsem_init - initialize an unnamed semaphoreSYNOPSIS#include <semaphore.h>int sem_init(sem_t *sem, int pshared, unsigned int value);Link with -pthread.
参数:
pshared:0表示线程间共享,非零表示进程间共享
value:信号量初始值

销毁


NAMEsem_destroy - destroy an unnamed semaphoreSYNOPSIS#include <semaphore.h>int sem_destroy(sem_t *sem);Link with -pthread.

等待

NAMEsem_wait, sem_timedwait, sem_trywait - lock a semaphoreSYNOPSIS#include <semaphore.h>int sem_wait(sem_t *sem);int sem_trywait(sem_t *sem);int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);Link with -pthread.Feature Test Macro Requirements for glibc (see feature_test_macros(7)):sem_timedwait(): _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600

功能:等待信号量,会将信号量的值减1

发布

NAMEsem_post - unlock a semaphoreSYNOPSIS#include <semaphore.h>int sem_post(sem_t *sem);Link with -pthread.

功能:发布信号量,表示资源使用完毕,可以归还资源了。将信号量值加1。

二元信号量模拟实现互斥功能

信号量本质是一个计数器,如果将信号量的初始值设置为1,那么此时该信号量叫做二元信号量。

基于环形队列的生产消费模型

环形队列采用数组模拟,用模运算来模拟环状特性

环形结构起始状态和结束状态都是一样的,不好判断为空或者为满,所以可以通过加计数器或者标记位来 判断满或者空。另外也可以预留一个空的位置,作为满的状态

生产者和消费者申请和释放资源

空间资源和数据资源

代码上用 data_sem和space_sem分别表示数据资源和空间资源

生产者:生产者关注的是空间资源,只要环形队列中有空间,他就可以生产。

=》生产者申请空间资源,释放数据资源  

让我们来分析一下生产者具体需要做什么:

1.如果blank_sem的值不为0,则信号量申请成功,此时生产者可以进行生产操作。

2.如果blank_sem的值为0,则信号量申请失败,此时生产者需要在blank_sem的等待队列下进行阻塞等待,直到环形队列当中有新的空间后再被唤醒

消费者:消费者关注的是数据资源,只要有数据就能消费

=》消费者申请数据资源,释放空间资源

消费者有具体怎么做呢?

虽然生产者在进行生产前是对blank_sem进行的P操作,但是当生产者生产完数据,应该对data_sem进行V操作而不是blank_sem。
生产者在生产数据前申请到的是blank位置,当生产者生产完数据后,该位置当中存储的是生产者生产的数据,在该数据被消费者消费之前,该位置不再是blank位置,而应该是data位置。
当生产者生产完数据后,意味着环形队列当中多了一个data位置,因此我们应该对data_sem进行V操作。

必须遵守的两个规则

第一个规则:生产者和消费者不能对同一个位置进行访问。(这个是显然的,如果同时访问同一个位置的数据,可能会产生意外的错误)

第二个规则:无论是生产者还是消费者,都不应该将对方套一个圈以上。

(我们通过信号量适当地让消费者线程和生产者线程相互切换)

信号量保护环形队列的原理

代码实现

#include <iostream>
#include <vector>
#include <stdlib.h>
#include <semaphore.h>
#include <pthread.h>
const int NUM=16;
class RingQueue
{
public:RingQueue(int _cap = NUM) : q(_cap), cap(_cap){sem_init(&data_sem, 0, 0);sem_init(&space_sem, 0, cap);consume_step = 0;product_step = 0;}void PutData(const int &data){sem_wait(&space_sem); // Pq[consume_step] = data;consume_step++;consume_step %= cap;sem_post(&data_sem); // V}void GetData(int &data){sem_wait(&data_sem);data = q[product_step];product_step++;product_step %= cap;sem_post(&space_sem);}~RingQueue(){sem_destroy(&data_sem);sem_destroy(&space_sem);}private:std::vector<int> q;int cap;sem_t data_sem;sem_t space_sem;int consume_step;int product_step;
};
void *consumer(void *arg)
{RingQueue *rqp = (RingQueue *)arg;int data;while (true){rqp->GetData(data);std::cout << "Consume data done : " << data << std::endl;sleep(1);}
}void *producter(void *arg)
{RingQueue *rqp = (RingQueue *)arg;srand((unsigned long)time(NULL));while (true){int data = rand() % 1024;rqp->PutData(data);std::cout << "Prodoct data done: " << data << std::endl;// sleep(1);}
}
int main()
{RingQueue rq;pthread_t c, p;pthread_create(&c, NULL, consumer, (void *)&rq);pthread_create(&p, NULL, producter, (void *)&rq);pthread_join(c, NULL);pthread_join(p, NULL);
}

更多代码实现参考

RingQueue · fortianyang/StudyForLinux - 码云 - 开源中国 (gitee.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_159134.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小技巧:一键上传ppt制作出高级感的企业画册

PPT该如何一键转换出高级感的企业画册呢&#xff1f; 如果你用对了工具&#xff0c;就能在短短的三秒内一键转换出3D仿真翻页的企业画册。并且自带的翻书声和添加的视频、链接能够更加体现出企业画册的高级感。 这个工具就是FLBOOK&#xff0c;操作很简单&#xff0c;它可支持微…

⛳ TCP 协议详解

目录 ⛳ TCP 协议详解&#x1f3a8; 一、TCP / IP 协议的分层模型&#x1f3d3; 1.1、应用层&#x1f9f8; 1.2、传输层&#x1f52e; 1.3、网络层&#x1f3af; 1.4、链路层 &#x1f3ed; 二、HTTP 报文传输原理&#x1f945; 2.1、HTTP 报文传输&#x1f48e; 2.2、封装和分…

LeetCode——二叉树篇(五)

刷题顺序及思路来源于代码随想录&#xff0c;网站地址&#xff1a;https://programmercarl.com 目录 404. 左叶子之和 513. 找树左下角的值 递归 迭代 112. 路径总和 113. 路径总和 II 404. 左叶子之和 给定二叉树的根节点 root &#xff0c;返回所有左叶子之和。 /**…

【前端|JS实战第1篇】使用JS来实现属于自己的贪吃蛇游戏!

前言 贪吃蛇游戏是经典的小游戏&#xff0c;也是学习前端JS的一个很好的练习项目。在本教程中&#xff0c;我们将使用 JavaScript 来逐步构建一个贪吃蛇游戏。我们会从创建游戏区域开始&#xff0c;逐步添加蛇的移动、食物的生成以及游戏逻辑等功能。 &#x1f680; 作者简介&a…

C#面向对象程序设计之变量的作用域,深入浅出 入门和进阶教程3

1、效果镇楼: 最近忒忙了!真的忙到不可开交的呢,繁杂业务的处理真的不是您,我个人想象的样子,完全比您个人想象的要复杂至少三倍以上的难度!也是客观事实。 菜鸟程序员面临的客观残酷现实!尤其您这个年龄阶段,实在是堪忧,尴尬的很啊,非常严峻的形势,也可以说特别严峻…

Python写一个创意五子棋游戏

前言 在本教程中&#xff0c;我们将使用Python写一个创意五子棋游戏 &#x1f4dd;个人主页→数据挖掘博主ZTLJQ的主页 个人推荐python学习系列&#xff1a; ☄️爬虫JS逆向系列专栏 - 爬虫逆向教学 ☄️python系列专栏 - 从零开始学python 首先 GomokuGame 类的构造函数 __ini…

文件上传xxx

本地保存文件 将文件保存到服务器本地硬盘中 max-request-size 多个文件总大小不能大于100M PostMapping("/upload")public Result upload(String username,Integer age,MultipartFile image) throws IOException {log.info("用户名:{},牛叔&#xff1a;{},文件…

【机器学习实战】朴素贝叶斯:过滤垃圾邮件

【机器学习实战】朴素贝叶斯&#xff1a;过滤垃圾邮件 0.收集数据 这里采用的数据集是《机器学习实战》提供的邮件文件&#xff0c;该文件有ham 和 spam 两个文件夹&#xff0c;每个文件夹中各有25条邮件&#xff0c;分别代表着 正常邮件 和 垃圾邮件。 这里需要注意的是需要…

蓝牙 - BLE SPP的设计策略(Serial over BLE strategy)

在开发 BLE 连接产品的过程中&#xff0c;你可能会有这样的疑问&#xff1a;"Serial profile在哪里&#xff1f;也许你以为你在蓝牙技术联盟网站上滚动浏览长长的profile列表时错过了它。又或者&#xff0c;你根本就没去看&#xff0c;而是准备选择更快的方法&#xff0c;…

人脸识别技术在社会安全与便利中的应用

引言&#xff1a;随着人工智能的快速发展&#xff0c;人脸识别技术已经成为一种实时、高效的身份验证和安全监控手段。它的广泛应用可以帮助识别犯罪嫌疑人、寻找失踪人口等&#xff0c;为社会安全和公共利益做出了重要贡献。本文将详细探讨人脸识别技术的原理、应用&#xff0…

【高级IO】- 五种 IO 模型 | 多路转接 - select

IO的基本概念 I/O&#xff08;Input / output&#xff09;就是输入和输出&#xff0c;在冯诺依曼体系中&#xff0c;将数据从输入设备拷贝到内存叫做输入&#xff0c;将数据从内存拷贝到输出设备叫做输出。 对文件进行的读写操作本质就是一种IO&#xff0c;文件IO对应的外设就…

Linux命令200例:clock的具体应用,设置系统的时钟时间、硬件时钟和定时器等相关信息

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌。CSDN专家博主&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &…

前端对文件转换处理的一些常用方法

文章目录 0&#xff0c;前言1&#xff0c;将图片的url网络链接(http://) 转为base64格式2&#xff0c;将base64的图片数据转换为file文件3&#xff0c;将以base64的图片数据转换为Blob4&#xff0c;将file文件转化为base645&#xff0c;将file文件转换为Blob6&#xff0c;获取文…

微信公众平台发布小程序流程

最近因为部署小程序&#xff0c;学习了下如何部署小程序 1. 取消不检验合法域名并上传小程序 建议在小程序上传之前&#xff0c;先取消不校验合法域名并真机调试下。 2. 登录微信公众平台 登录微信公众平台 3. 设置服务器域名 在开放->开发管理->开发设置找到服务器…

三维重建_基于图像的三维重建_面片/光度一致性

参考: 深蓝学院 基于图像的三维重建 1. 三维重建的流程回顾 基于深度图的三维重建:从无序图像获取稀疏点云和位姿,然后进行多视角立体重建。 多视角立体重建包含:(输入稀疏点云、各个图像位姿、图像)先进行立体对(3D-2D,2D-2D)的选择,然后计算深度图,接着进行深度图…

【C语言】C语言用数组算平均数,并输出大于平均数的数

题目 让用户输入一系列的正整数&#xff0c;最后输入“-1”表示输入结束&#xff0c;然后程序计算出这些数的平均数&#xff0c;最后输出输入数字的个数和平均数以及大于平均数的数 代码 #include<stdio.h> int main() {int x;double sum 0;int cnt 0;int number[100…

使用 AI 将绘画和照片转换为动画

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可二次编辑器的3D应用场景 华盛顿大学和Facebook的研究人员最近发表了一篇论文&#xff0c;展示了一种基于深度学习的系统&#xff0c;可以将静止图像和绘画转换为动画。称为照片唤醒的算法使用卷积神经网络从单个静止图像以 …

WPF入门到精通:1.新建项目及项目结构

WPF&#xff08;Windows Presentation Foundation&#xff09;是一种用于创建 Windows 应用程序的技术&#xff0c;它可以通过 XAML&#xff08;Extensible Application Markup Language&#xff09;和 C# 或其他 .NET 语言来实现。WPF 提供了许多强大的 UI 控件和样式&#xf…

如何找到一个数的所有质因数,以及如何快速判断一个数是不是质数

前情介绍 今天遇到一个需求&#xff1a;找到一个数所有的质因数。 初步解决 先定义一个判断质数的函数&#xff1a; def is_Prime(number):i 2count 0while i < number:if number % i 0 :count 1i 1if count > 0:return Falseelse:return True 接着定义一个寻找质…

Java-图书登录系统的实现

实现效果 它将面对 管理员 和 普通用户 两种用户来提供服务&#xff0c;并且各自的服务并不相同。 实现思路 一般写项目&#xff0c;每个独立的功能都会写成一个类&#xff0c;而有关联的功能&#xff0c;都会将多个类存放在一个包中&#xff0c;此项目我们将用 3 个包来体现我…