Spring-ThreadLocal内存泄漏原因及解决办法

news/2024/4/29 6:08:44/文章来源:https://blog.csdn.net/lvyuanj/article/details/137098413

ThreadLocal原理回顾
在这里插入图片描述
ThreadLocal的原理:每个Thread内部维护着一个ThreadLocalMap,它是一个Map。这个映射表的Key是一个弱引用,其实就是ThreadLocal本身,Value是真正存的线程变量Object。
也就是说ThreadLocal本身并不真正存储线程的变量值,它只是一个工具,用来维护Thread内部的Map,帮助存和取。注意上图的虚线,它代表一个弱引用类型,而弱引用的生命周期只能存活到下次GC前。

ThreadLocal为什么会内存泄漏

ThreadLocal在ThreadLocalMap中是以一个弱引用身份被Entry中的Key引用的,因此如果ThreadLocal没有外部强引用来引用它,那么ThreadLocal会在下次JVM垃圾收集时被回收。这个时候就会出现Entry中Key已经被回收,出现一个null Key的情况,外部读取ThreadLocalMap中的元素是无法通过null Key来找到Value的。因此如果当前线程的生命周期很长,一直存在,那么其内部的ThreadLocalMap对象也一直生存下来,这些null key就存在一条强引用链的关系一直存在:Thread --> ThreadLocalMap–>Entry–>Value,这条强引用链会导致Entry不会回收,Value也不会回收,但Entry中的Key却已经被回收的情况,造成内存泄漏。
但是JVM团队已经考虑到这样的情况,并做了一些措施来保证ThreadLocal尽量不会内存泄漏:在ThreadLocal的get()、set()、remove()方法调用的时候会清除掉线程ThreadLocalMap中所有Entry中Key为null的Value,并将整个Entry设置为null,利于下次内存回收。
来看看ThreadLocal的get()方法底层实现

public T get() {Thread t = Thread.currentThread();ThreadLocalMap map = getMap(t);if (map != null) {ThreadLocalMap.Entry e = map.getEntry(this);if (e != null)return (T)e.value;}return setInitialValue();}

在调用map.getEntry(this)时,内部会判断key是否为null,继续看map.getEntry(this)源码

private Entry getEntry(ThreadLocal key) {int i = key.threadLocalHashCode & (table.length - 1);Entry e = table[i];if (e != null && e.get() == key)return e;elsereturn getEntryAfterMiss(key, i, e);
}

在getEntry方法中,如果Entry中的key发现是null,会继续调用getEntryAfterMiss(key, i, e)方法,其内部回做回收必要的设置,继续看内部源码:

private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {Entry[] tab = table;int len = tab.length;while (e != null) {ThreadLocal k = e.get();if (k == key)return e;if (k == null)expungeStaleEntry(i);elsei = nextIndex(i, len);e = tab[i];}return null;
}

注意k == null这里,继续调用了expungeStaleEntry(i)方法,expunge的意思是擦除,删除的意思,见名知意,在来看expungeStaleEntry方法的内部实现:

private int expungeStaleEntry(int staleSlot) {Entry[] tab = table;int len = tab.length;// expunge entry at staleSlot(意思是,删除value,设置为null便于下次回收)tab[staleSlot].value = null;tab[staleSlot] = null;size--;// Rehash until we encounter nullEntry e;int i;for (i = nextIndex(staleSlot, len);(e = tab[i]) != null;i = nextIndex(i, len)) {ThreadLocal k = e.get();if (k == null) {e.value = null;tab[i] = null;size--;} else {int h = k.threadLocalHashCode & (len - 1);if (h != i) {tab[i] = null;// Unlike Knuth 6.4 Algorithm R, we must scan until// null because multiple entries could have been stale.while (tab[h] != null)h = nextIndex(h, len);tab[h] = e;}}}return i;
}

注意这里,将当前Entry删除后,会继续循环往下检查是否有key为null的节点,如果有则一并删除,防止内存泄漏。
但这样也并不能保证ThreadLocal不会发生内存泄漏,例如:

使用static的ThreadLocal,延长了ThreadLocal的生命周期,可能导致的内存泄漏。
分配使用了ThreadLocal又不再调用get()、set()、remove()方法,那么就会导致内存泄漏。

为什么使用弱引用?

从表面上看,发生内存泄漏,是因为Key使用了弱引用类型。但其实是因为整个Entry的key为null后,没有主动清除value导致。很多文章大多分析ThreadLocal使用了弱引用会导致内存泄漏,但为什么使用弱引用而不是强引用?
官方文档的说法:

To help deal with very large and long-lived usages, the hash table entries use WeakReferences for keys.
为了处理非常大和生命周期非常长的线程,哈希表使用弱引用作为 key。

下面我们分两种情况讨论:

key 使用强引用:引用的ThreadLocal的对象被回收了,但是ThreadLocalMap还持有ThreadLocal的强引用,如果没有手动删除,ThreadLocal不会被回收,导致Entry内存泄漏。
key 使用弱引用:引用的ThreadLocal的对象被回收了,由于ThreadLocalMap持有ThreadLocal的弱引用,即使没有手动删除,ThreadLocal也会被回收。value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。
比较两种情况,我们可以发现:由于ThreadLocalMap的生命周期跟Thread一样长,如果都没有手动删除对应key,都会导致内存泄漏,但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。

因此,ThreadLocal内存泄漏的根源是:由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key的value就会导致内存泄漏,而不是因为弱引用。
总结
综合上面的分析,我们可以理解ThreadLocal内存泄漏的前因后果,那么怎么避免内存泄漏呢?

每次使用完ThreadLocal,都调用它的remove()方法,清除数据。

在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就清理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1028316.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react使用ant desgin 组件实现便利开发

1.使用Form.item的方法和语法规则 先导入文件 import {Form} from antd; const [form] Form.useForm(); <Form form{form} name"dynamic_rule" width"100%" onFinish{onFinish} onFinishFailed{onFinishFailed} > 接写来就是渲染内容了 // 点击…

【爬虫开发】爬虫从0到1全知识md笔记第2篇:requests模块,知识点:【附代码文档】

爬虫开发从0到1全知识教程完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;爬虫课程概要&#xff0c;爬虫基础爬虫概述,,http协议复习。requests模块&#xff0c;requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

CISP 4.2备考之《物理与网络通信安全》知识点总结

文章目录 第 1 节 物理与环境安全第 2 节 网络安全基础第 3 节 网络安全技术与设备第 1 部分 防火墙第 2 部分 入侵检测系统第 3 部分 其他安全产品 第 4 节 网络安全设计规划 第 1 节 物理与环境安全 1.场地选择 1.1 场地选择:自然条件、社会条件、其他条件。1.2 抗震和承重&…

服务器被挖矿了怎么办,实战清退

当我们发现服务器资源大量被占用的时候&#xff0c;疑似中招了怎么办 第一时间重启服务是不行的&#xff0c;这些挖矿木马一定是会伴随着你的重启而自动重启&#xff0c;一定时间内重新霸占你的服务器资源 第一步检查高占用进程 top -c ps -ef 要注意这里%CPU&#xff0c;如果…

R语言使用dietaryindex包计算NHANES数据多种营养指数(2)

健康饮食指数 (HEI) 是评估一组食物是否符合美国人膳食指南 (DGA) 的指标。Dietindex包提供用户友好的简化方法&#xff0c;将饮食摄入数据标准化为基于指数的饮食模式&#xff0c;从而能够评估流行病学和临床研究中对这些模式的遵守情况&#xff0c;从而促进精准营养。 该软件…

python(一)网络爬取

在爬取网页信息时&#xff0c;需要注意网页爬虫规范文件robots.txt eg:csdn的爬虫规范文件 csdn.net/robots.txt User-agent: 下面的Disallow规则适用于所有爬虫&#xff08;即所有用户代理&#xff09;。星号*是一个通配符&#xff0c;表示“所有”。 Disallow&…

达梦数据库自动备份(全库)+还原(全库) 控制台

一 前提 1.安装达梦数据库DB8(请参照以前文章) 我的数据库安装目录是 /app/dmDB8 2.已创建实例 (请参照上一篇文章) 二 准备测试数据 三 自动备份步骤 1.开启归档模式 开启DM管理工具管理控制台 弹不出来工具的 输入命令 xhost 第一步 将服务器转换为配置状态 右键-&g…

【数据结构】顺序表习题之移除元素和合并两个有效数组

&#x1f451;个人主页&#xff1a;啊Q闻 &#x1f387;收录专栏&#xff1a;《数据结构》 &#x1f389;道阻且长&#xff0c;行则将至 前言 嗨呀&#xff0c;今天的博客是关于顺序表的两道题目&#xff0c;是力扣的移除元素和合并有序数组的题目。 一.移除…

面试笔记——框架篇Spring系列(Spring、SpringMVC、SpringBoot)

Spring 线程安全 singleton : bean在每个Spring IOC容器中只有一个实例。 prototype&#xff1a;一个bean的定义可以有多个实例。 问题一&#xff1a; Spring中的单例bean是否是线程安全的&#xff1f; ControllerRequestMapping("/user")public class UserContro…

JavaSE day14笔记

第十四天课堂笔记 课上: 适当做笔记课下 : 总结 , 读代码 , 反复敲代码 , 做练习 数组★★★ 数组 : 存储多个 同一类型 的容器格式 :数组类型 : 引用数据类型, new运算符在堆中 分配一块连续的存储空间 , 系统会给数组元素默认初始化 , 将该数组的引用赋值给数组名 引用数据…

开源 OLAP 及其在不同场景下的需求

目录 一、开源 OLAP 综述 二、OLAP场景思考 2.1 面向客户的报表 2.2 面向经营的报表 2.3 末端运营分析 2.4 用户画像 2.5 订单分析 2.6 OLAP技术需求思考 三、开源数据湖/流式数仓解决方案 3.1 离线数仓体系——Lambda架构 3.2 实时数据湖解决方案 3.3 实时分析解决…

PPP+VPN综合实验

一、实验拓扑 二、实验划分 三、实验需求 四、实验结果 1.配置各端口和pc的IP&#xff1a; pc1&#xff1a; pc2&#xff1a; pc3&#xff1a; pc4&#xff1a; R1: [r1]inter g0/0/0 [r1-GigabitEthernet0/0/0]ip ad 192.168.1.2 24 [r1-GigabitEthernet0/0/0]int s4/0/0…

HCIP —— 多生成树 (MSTP)

MSTP --- Multiple Spanning Tree Protocol --- 802.1s 在 MSTP 中 &#xff0c;提出了实例的概念&#xff0c;相当于可用让多个VLAN同时属于一个实例&#xff0c;然后只需要一个实例生成一棵树。 --- 一种 VLAN 分流的思想 实例ID &#xff1a;instance ID 由 12位 二进制…

【Chrome控制台】network选项卡的使用

首先打开调试面板「windows:F12&#xff1b;mac&#xff1a;commandoptioni」&#xff0c;找到Network选项卡&#xff0c;其中是对网络相关的数据信息。 录制 控制台内容区域左上角红色按钮就是录制按钮&#xff0c;默认是开启状态&#xff0c;表示监听整个页面运行过程中所产…

Delphi模式编程

文章目录 Delphi模式编程涉及以下几个关键方面&#xff1a;**设计模式的应用****Delphi特性的利用****实际开发中的实践** Delphi模式编程的实例 Delphi模式编程是指在使用Delphi这一集成开发环境&#xff08;IDE&#xff09;和Object Pascal语言进行软件开发时&#xff0c;采用…

九河云荣获“华为2024·亚太区年度杰出合作伙伴奖”

2024年3月26日~27日&#xff0c;以“加速智能化&#xff0c;一切皆服务”为主题的华为亚太生态伙伴大会在东莞隆重开幕&#xff0c;九河云作为专业的多云管理服务商&#xff0c;凭借多年来在云领域的赋能发展应邀出席并荣获“亚太区年度杰出伙伴奖”&#xff0c;这不仅彰显了九…

Reactor 模式全解:实现非阻塞 I/O 多路复用

Reactor网络模式是什么&#xff1f; Reactor网络模式时目前网络最常用的网络模式。如果你使用Netty&#xff0c;那么你在使用Reactor;如果你使用Twisted,那么你子啊使用Reactor;如果你使用netpoll&#xff0c;那么你在使用Reactor。 这里先给出答案&#xff1a;Reactor I/O多…

K8S之DaemonSet控制器

DaemonSet控制器 概念、原理解读、应用场景概述工作原理典型的应用场景介绍DaemonSet 与 Deployment 的区别 解读资源清单文件实践案例 概念、原理解读、应用场景 概述 DaemonSet控制器能够确保K8S集群所有的节点都分别运行一个相同的pod副本&#xff1b; 当集群中增加node节…

华为升级FIT AP示例(通过AC的命令行)

升级FIT AP示例&#xff08;通过AC的命令行&#xff09; 前提条件 从官网下载升级目标版本对应的系统软件包&#xff0c;保存在PC本地。如果下载的文件是压缩文件&#xff0c;则需要解压缩出系统软件包。 AP已在WAC上线。 背景信息 升级的过程是先将系统软件包传到设备上&…

数据结构基础(三)链表

链表&#xff08;Linked List&#xff09;是一种常见的线性数据结构&#xff0c;由一系列称为节点&#xff08;Node&#xff09;的元素组成&#xff0c;每个节点包含两部分&#xff1a;数据&#xff08;Data&#xff09;和指向下一个节点的引用&#xff08;Pointer 或者 Link&a…