计算机网络:物理层 - 信道极限容量

news/2024/4/29 6:57:34/文章来源:https://blog.csdn.net/fsdfafsdsd/article/details/136994555

计算机网络:物理层 - 信道极限容量

    • 实际信道中的数字信号
    • 奈式准则
    • 香农公式
    • 练习


实际信道中的数字信号

信号在传输过程中会受到各种因素的影响,如图所示:

在这里插入图片描述

这是一个数字信号,当它通过实际的信道后,波形会产生失真,当失真不严重时,在输出端还可根据已失真的波形还原出发送的码元。但当失真严重时,在接收端就很难判断这个信号在什么时候是 1 ,在什么时候是 0 :

信号波形失去了码元之间的清晰界限,这种现象叫做码间串扰

产生失真的原因主要有码元传输速率信号传输距离噪声干扰传输媒体质量等。


奈式准则

早在 1924 年,奈奎斯特就推导出了著名的奈氏准则,他给出了在假定的理想条件下,为了避免码间串扰,码元传输速率的上限。

理想低通信道的最高码元传输速率
理想低通信道的最高码元传输速率  = 2 W Baud  = 2 W 码元/秒  \text { 理想低通信道的最高码元传输速率 }=2 \mathrm{~W} \text { Baud }=2 \mathrm{~W} \text { 码元/秒 }  理想低通信道的最高码元传输速率 =2 W Baud =2 W 码元/ 

理想带通信道的最高码元传输速率
理想带通信道的最高码元传输速率 = W Baud  = W 码元/秒  \text { 理想带通信道的最高码元传输速率}= \mathrm{~W} \text { Baud }= \mathrm{~W} \text { 码元/秒 }  理想带通信道的最高码元传输速率= W Baud = W 码元/ 

低通信道:信号的所有低频分量只要其频率不超过某个上限值,都能不失真地通过此信道;而所有频率超过该上限值的高频分量都不能通过该信道。(如果题目没有规定上下限,或者没有指明信道,都默认是低通信道
带通信道:只允许上下限之间的频率的信号不失真地通过,其余所有频率都不能通过该信道

W:信道带宽,单位为Hz

Baud的意思是波特,也就是码元每秒。

码元传输速率,又称为波特率、调制速率、波形速率或符号速率。它与比特率有一定的关系。

  • 当一个码元只携带1比特的信息量时,1 码元每秒 = 1 比特每秒,也就是波特率比特率在数值上是相等的。

  • 当一个码元携带n比特的信息量时,1 码元每秒 = n 比特每秒,则波特率转换成比特率时,数值要乘以n

需要说明的是,实际的信道所能传输的最高码元速率要明显低于奈氏准则给出的这个上限值。这是因为奈氏准则是在假定的理想条件下推导出来的,不考虑其他因素,例如传输距离、噪声干扰、传输媒体质量等。

仅从公式来看,只要采用更好的调制方法,让码元可以携带更多的比特,岂不是可以无限制的提高信息的传入速率吗?

在解决这个问题之前,我们要先了解信噪比这个概念:

实际的信道都是有噪声的,但是噪声的影响是相对的,如果信道较强,那么噪声的影响相对就小,于是用信噪比来评估噪声对信道的影响。信噪比就是信道的平均功率S和噪声的平均功率N之比,记为 S / N  。但是信噪比有一个比较容易混淆的问题,那就是信噪比有两种表示形式:没有单位的形式以及以dB为单位的形式。它们满足以下公式:

信噪比 ( d B ) = 10 log ⁡ 10 S N ( d B ) 信噪比 \left ( dB \right ) = 10 \log_{10}{\frac{S}{N}} \left ( dB \right ) 信噪比(dB)=10log10NS(dB)

左侧的信噪比是以分贝dB为单位的信噪比,而右侧的 S N \frac{S}{N} NS则是无单位的信噪比。

信道的极限信息传输速率还要受限于实际的信号在信道中传输时的信噪比,因为信道中的噪声也会影响接收端对码元的识别,并且噪声功率相对信号功率越大,影响就越大。后来的香农公式中,就量化了信噪比对传输速率的影响:


香农公式

1948 年,香农用信息论的理论推导出了带宽受限且有高斯白噪声干扰的信道的极限信息传输速率。具体公式如下所示:

c = W ⋅ log ⁡ 2 ( 1 + S N ) ( b i t / s ) c = W \cdot \log_{2}{\left ( 1 + \frac{S}{N} \right ) } \left ( bit/s \right ) c=Wlog2(1+NS)(bit/s)

c:信道的极限信息传输速率,单位是bit/s,
W:信道带宽,单位为Hz。
S :信道内所传送信号的平均功率
N :信道内的高斯噪声功率
S N \frac{S}{N} NS :信噪比,此时这个分式整体是没有单位的信噪比

如下所示,从相同公式可以看出,信道带宽或信道中信噪比越大,信息的极限传入速率就越大

需要说明的是,在实际信道上能够达到的信息传输速率要比该公式的极限传输速率低不少,这是因为在实际信道中,信号还要受到其他一些损伤,例如各种脉冲干扰、信号在传输中的衰减和失真等。这些因素在相同公式中并未考虑。综合来看,耐试准则和相同公式在信道带宽一定的情况下,要想提高信息的传入速率,就必须采用多元制,并努力提高信道中的信噪比。自从相同公式发表以后,各种新的信号处理和调制方法就不断出现,其目的都是为了尽可能的接近相同公式所给出的传输速率极限。


练习

接下来我们来做几个与这两个公式有关的练习题。
在这里插入图片描述

答案是D

从香农公式 c = W ⋅ log ⁡ 2 ( 1 + S N ) ( b i t / s ) {\color{Red}c = W \cdot \log_{2}{\left ( 1 + \frac{S}{N} \right ) } \left ( bit/s \right ) } c=Wlog2(1+NS)(bit/s) 可知,信噪比频率带宽都会影响信道数据传输速率。
从奈氏准则 理想低通信道的最高码元传输速率  = 2 W Baud  = 2 W 码元/秒  {\color{Red}\text { 理想低通信道的最高码元传输速率 }=2 \mathrm{~W} \text { Baud }=2 \mathrm{~W} \text { 码元/秒 }}  理想低通信道的最高码元传输速率 =2 W Baud =2 W 码元/  可知,调制速度,也就是码元传入速度和码元所携带的比特数量都会影响信道数据传输速率。


在这里插入图片描述

从奈氏准则 理想低通信道的最高码元传输速率  = 2 W Baud  = 2 W 码元/秒  {\color{Red}\text { 理想低通信道的最高码元传输速率 }=2 \mathrm{~W} \text { Baud }=2 \mathrm{~W} \text { 码元/秒 }}  理想低通信道的最高码元传输速率 =2 W Baud =2 W 码元/  可知,该通信链路的最高码元传播速率为 2 × 3 k = 6 k ( B a u d ) {\color{Red} 2\times 3k = 6k\left ( Baud \right ) } 2×3k=6k(Baud),也就是 6 k ( 码元每秒 ) {\color{Red}6k\left ( 码元每秒 \right ) } 6k(码元每秒)

采用四个相位、每个相位四种振幅的 QM 调制技术,可以调制出 4 × 4 = 16 {\color{Red} 4\times 4=16} 4×4=16 个不同的基本波形,也就是 16 个不同的码元。采用二进制对这 16 个不同的码元进行编码,需要使用 log ⁡ 2 16 = 4 {\color{Red} \log_{2}{16} = 4 } log216=4 个比特,换句话说,每个码源可以携带的信息量为 4 比特

综合前两段可知,该通信链路的最大数据传输速率等于 6 k ( 码元每秒 ) {\color{Red}6k\left ( 码元每秒 \right ) } 6k(码元每秒),一个码元 4 比特, 理想低通信道的最高码元传输速率  = 6 k ( B a u d ) = 6 k × 4 = 24 k b i t / s {\color{Red}\text { 理想低通信道的最高码元传输速率 } = 6k\left ( Baud \right ) = 6k \times 4 = 24k bit/s}  理想低通信道的最高码元传输速率 =6k(Baud)=6k×4=24kbit/s

因此,本题的正确答案是B

实际上,对于这种类型的题目,不管题目给出的调制技术多么复杂,或者对于我们而言多么陌生,这都不会影响我们解题。我们只需关心这种调制技术可以调制出多少个不同的基本波形即可。


在这里插入图片描述

采用四相位调制,可以调制出四种相位不同的基本波形,采用二进制对这四种不同的波形进行编码,需要使用 log ⁡ 2 4 = 2 {\color{Red} \log_{2}{4} = 2 } log24=2个比特。换句话说,每个码元可以携带的信息量为两个比特。

数据传输速率等于波特率乘以每个码元所携带的信息量:

波特率 = 数据传输速率 码元信息量 {\color{Red}波特率 = \frac{数据传输速率}{ 码元信息量 }} 波特率=码元信息量数据传输速率

带入本题的相关数值:
波特率 = 2400 ( b i t / s ) 2 = 1200 ( B a u d ) {\color{Red}波特率 = \frac{2400(bit/s)}{ 2 } = 1200(Baud)} 波特率=22400(bit/s)=1200(Baud)

因此,本题的正确答案是B


在这里插入图片描述

本题中,信噪比是以分贝为单位的,我们要先通过公式 信噪比 ( d B ) = 10 log ⁡ 10 S N ( d B ) {\color{Red}信噪比 \left ( dB \right ) = 10 \log_{10}{\frac{S}{N}} \left ( dB \right )} 信噪比(dB)=10log10NS(dB)把它转化为没有单位的S / N

公式变形得到:
S N = 1 0 信噪比 10 {\color{Red}\frac{S}{N} = 10^{\frac{信噪比}{10} } } NS=1010信噪比

带入数据信噪比 = 30 dB

S N = 1 0 30 10 = 1000 {\color{Red}\frac{S}{N} = 10^{\frac{30}{10} } = 1000 } NS=101030=1000

根据香农公式 c = W ⋅ log ⁡ 2 ( 1 + S N ) ( b i t / s ) {\color{Red}c = W \cdot \log_{2}{\left ( 1 + \frac{S}{N} \right ) } \left ( bit/s \right ) } c=Wlog2(1+NS)(bit/s) ,带入带宽W = 8k HzS / N = 1000,得到W = 80k bit/s,由于取用理论最大数据理论值的50%,计算结果为40 bit/s

因此,本题的正确答案是C


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1027749.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement

LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement 相关链接:arXiv GitHub 关键字:LLM、Data Augmentation、Fine-tuning、NLP、Low-data Regime 摘要 预训练的大型语言模型(LLMs)目前是解决绝大多数自然语言处理任…

如何选择最适合Shopee店铺的支付方式?

Shopee平台为卖家提供了多元化的收款选项,包括了在线支付、虚拟账户余额支付以及线下支付方式。卖家在选择收款方式时,必须充分考虑到市场适应性这一关键因素。因为不同地区和不同国家的消费者对于支付方式有着不同的偏好和习惯,因此&#xf…

零基础入门数据挖掘系列之「特征工程」

摘要:对于数据挖掘项目,本文将学习应该从哪些角度做特征工程?从哪些角度做数据清洗,如何对特征进行增删,如何使用PCA降维技术等。 特征工程(Feature Engineering)对特征进行进一步分析&#xf…

AI+软件工程:10倍提效!用ChatGPT编写系统功能文档

系统功能文档是一种描述软件系统功能和操作方式的文档。它让开发团队、测试人员、项目管理者、客户和最终用户对系统行为有清晰、全面的了解。 通过ChatGPT,我们能让编写系统功能文档的效率提升10倍以上。 ​《Leetcode算法刷题宝典》一位阿里P8大佬总结的刷题笔记…

深入理解PHP+Redis实现分布式锁的相关问题

概念 PHP使用分布式锁,受语言本身的限制,有一些局限性。 通俗理解单机锁问题:自家的锁锁自家的门,只能保证自家的事,管不了别人家不锁门引发的问题,于是有了分布式锁。分布式锁概念:是针对多个…

通过Caliper进行压力测试程序,且汇总压力测试问题解决

环境要求 第一步. 配置基本环境 部署Caliper的计算机需要有外网权限;操作系统版本需要满足以下要求:Ubuntu >= 16.04、CentOS >= 7或MacOS >= 10.14;部署Caliper的计算机需要安装有以下软件:python 2.7、make、g++(gcc-c++)、gcc及git。第二步. 安装NodeJS # …

RegSeg 学习笔记(待完善)

论文阅读 解决的问题 引用别的论文的内容 可以用 controlf 寻找想要的内容 PPM 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC / SPPELAN  ASPP STDC:short-term dense concatenate module 和 DDRNet SE-ResNeXt …

初识React(一)从井字棋游戏开始

写在前面: 磨磨唧唧了好久终于下定决心开始学react,刚刚接触感觉有点无从下脚...新的语法新的格式跟vue就像两种物种...倒是很好奇路由和store是怎么实现的了~v~,一点一点来吧!!! (一)创建项目 使用vite…

Reactor设计模式和Reactor模型

Reactor设计模式 翻译过来就是反应堆,所以Reactor设计模式本质是基于事件驱动。 角色 Handle(事件)EventHandler(事件处理器)ConcreteEventHandler(具体事件处理器)Synchronous Event Demult…

QT实现蒙层效果

一.蒙层的作用 1.为了其他窗口不被误操作,禁止对其他窗口操作 二.应用场景 1.一些触摸屏设备上弹出一个dialog窗口,在操作这个窗口的时候不希望后面的窗口被误操作 2.之前做一个医疗设备就曾有过这种需求,因为医疗设备对安全性要求非常高&…

利用 Scapy 库编写 ARP 缓存中毒攻击脚本

一、ARP 协议基础 参考下篇文章学习 二、ARP 缓存中毒原理 ARP(Address Resolution Protocol)缓存中毒是一种网络攻击,它利用了ARP协议中的漏洞,通过欺骗或篡改网络中的ARP缓存来实施攻击。ARP协议是用于将IP地址映射到物理MAC…

各大pdf转word软件都用的哪家的ocr引擎?

国内一般的PDF软件一般都调用某国际PDF原厂的OCR接口,但这家公司是主要做PDF,在OCR方面并不专注,一些不是很复杂的场景还能应付得过来,复杂一点的效果就强差人意了,推荐用金鸣表格文字识别系统,它主要有以下…

基于树莓派实现 --- 智能家居

最效果展示 演示视频链接:基于树莓派实现的智能家居_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Tr421n7BM/?spm_id_from333.999.0.0 (PS:房屋模型的搭建是靠纸板箱和淘宝买的家居模型,户型参考了留学时短租的公寓~&a…

Linux repo基本用法: 搭建自己的repo仓库[服务端]

概述 Repo的使用离不开Git, Git 和 Repo 都是版本控制工具,但它们在使用场景和功能上有明显区别… Git 定义:Git 是一个分布式的版本控制系统,由 Linus Torvalds 为 Linux 内核开发而设计,现已成为世界上最流行的版本控制软件之…

【详细讲解PostCSS如何安装和使用】

🌈个人主页:程序员不想敲代码啊🌈 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家🏆 👍点赞⭐评论⭐收藏 🤝 希望本文对您有所裨益,如有不足之处,欢迎在评论区提…

Leetcode146. LRU 缓存

Every day a Leetcode 题目来源&#xff1a;146. LRU 缓存 解法1&#xff1a;哈希表 链表 代码&#xff1a; /** lc appleetcode.cn id146 langcpp** [146] LRU 缓存*/// lc codestart class LRUCache { private:unordered_map<int, list<pair<int, int>>:…

图解Kafka架构学习笔记(二)

kafka的存储机制 https://segmentfault.com/a/1190000021824942 https://www.lin2j.tech/md/middleware/kafka/Kafka%E7%B3%BB%E5%88%97%E4%B8%83%E5%AD%98%E5%82%A8%E6%9C%BA%E5%88%B6.html https://tech.meituan.com/2015/01/13/kafka-fs-design-theory.html https://feiz…

华为防火墙配置指引超详细(包含安全配置部分)以USG6320为例

华为防火墙USG6320 华为防火墙USG6320是一款高性能、高可靠的下一代防火墙,适用于中小型企业、分支机构等场景。该防火墙支持多种安全功能,可以有效抵御网络攻击,保护网络安全。 目录 华为防火墙USG6320 1. 初始配置 2. 安全策略配置 3. 防火墙功能配置 4. 高可用性配…

四种常用限流算法、固定窗口限流算法、滑动窗口限流算法、漏桶限流算法和令牌桶限流算法

什么是限流&#xff1f; 限流可以被视为服务降级的一种形式&#xff0c;其核心目标是通过控制输入和输出流量来保护系统。通常&#xff0c;一个系统的处理能力是可以预估的&#xff0c;为了确保系统的稳定运行&#xff0c;当流量达到预定的阈值时&#xff0c;必须采取措施限制进…

在宝塔面板中,为自己的云服务器安装SSL证书,为所搭建的网站启用https(主要部分攻略)

前提条件 My HTTP website is running Nginx on Debian 10&#xff08;或者11&#xff09; 时间&#xff1a;2024-3-28 16:25:52 你的网站部署在Debain 10&#xff08;或者11&#xff09;的 Nginx上 安装单域名证书&#xff08;默认&#xff09;&#xff08;非泛域名&#xf…