【氮化镓】位错对氮化镓(GaN)电子能量损失谱(EEL)的影响

news/2024/4/28 16:53:02/文章来源:https://blog.csdn.net/monian000/article/details/137106904

本文献《Influence of dislocations on electron energy-loss spectra in gallium nitride》由C. J. Fall等人撰写,发表于2002年。研究团队通过第一性原理计算,探讨了位错对氮化镓(GaN)电子能量损失谱(EEL)的影响。研究发现,未装饰的全核心位错导致低损耗EEL光谱中低于块体起始能量的吸收。此外,边缘位错附近的氮原子的静电势变化显著,对核心损耗光谱的简单解释提出了质疑。研究还模拟了不同电荷状态下GaN边缘和螺旋位错的EEL光谱,并与实验数据进行了比较,发现理论结果与实验光谱一致。

研究背景: 氮化镓作为一种重要的宽禁带半导体材料,在光电子和微电子领域有着广泛的应用。位错作为晶体中的缺陷,对材料的电子结构和性能有着显著影响。因此,理解位错对GaN电子能量损失谱的影响对于提高材料性能具有重要意义。

研究目的: 本研究旨在通过第一性原理计算,探究GaN中边缘和螺旋位错对EEL光谱的影响,以及这些位错导致的能隙态对材料电子性质的影响。

研究方法: 研究团队采用了基于密度泛函理论的局部密度近似(LDA)和平面波赝势方法进行自洽的从头算模拟。通过构建包含位错的超胞模型,计算了GaN的低损耗和核心激发EEL光谱。同时,研究了不同电荷状态下位错的电子结构。

以下是具体的计算方法细节总结:

  1. 计算设置:

    • 作者使用了局部密度近似(LDA)作为交换相关近似,并利用AIMPRO代码进行从头算模拟。
    • 为了描述离子核心,使用了赝势方法,并包含了非线性核心修正以处理镓的3d电子。
    • 电荷密度在平面波中展开,截止能量为300 Ry,而波函数则使用针对块体系统优化的局域的s、p和d原子中心高斯轨道表示。
    • 结构优化使用每个原子上的dppp基组进行,而EEL光谱的计算则使用Ga的Al的dddd基组和N的dppp基组。
    • 使用Monkhorst-Pack k点网格进行布里渊区积分。
  2. 位错模型构建:

    • 作者考虑了两种方法来描述位错: a. 在144原子超胞中插入一对具有相反Burgers矢量的边缘位错。 b. 在120原子超胞-团簇混合中包含单个边缘位错,其中表面悬挂键通过额外的分数电荷氢原子饱和。
    • 对于螺旋位错,使用方法b进行研究,包含108个Ga和N原子。
    • 这两种技术都描述了无限长度的“0001”位错,并且在“0001”方向上保持了与c轴的体值周期性。
  3. EEL光谱理论计算:

    • 低损耗EEL光谱由价带和导带之间的电子跃迁产生,涉及能隙态的跃迁可以探测缺陷。
    • 实验信号代表了介电函数虚部的对角元素,通过在偶极近似下计算得到。
    • 通过Kramers-Kronig变换获得介电函数的实部,并且在计算中使用了多项式扩展方案,以避免洛伦兹函数在能隙区域低能量处的长尾效应。
  4. 核心激发EEL光谱计算:

    • 核心激发EEL光谱由N 1s核心电子向空的能隙态或导带态的电子跃迁产生。
    • 为了计算核心激发EEL光谱,作者们考虑了位错附近的原子键变化引起的局部电势变化,这些变化会影响核心能级的能源。
  5. 计算参数:

    • 计算使用了1024个MP k点进行布里渊区积分,并且在超胞中使用了类似的k点密度。
    • 为了模拟实验中的EEL光谱,作者们假设了一个电子束探针直径为10-15 Å,位于位错核心中心。

研究结果与机理解释:

研究发现,全核心位错导致在低损耗EEL光谱中出现低于块体起始能量的吸收峰。边缘位错附近的氮原子静电势变化可达1伏特,这可能会影响核心损耗光谱的解释。理论计算的EEL光谱与实验数据吻合良好,表明模型能够有效地描述位错对电子结构的影响。

  1. 低损耗EEL光谱与实验数据的一致性: 研究计算得到的低损耗EEL光谱与实验数据在峰值和肩部上有很好的定性一致性,这验证了所使用的计算方法和参数的有效性。

  2. 位错导致的能隙态: 研究发现,未装饰的全核心位错在GaN的能隙中引入了局域态,这些态导致了低于块体起始能量的吸收。这意味着位错的存在会影响材料的电子性质。

  3. 位错附近的静电势变化: 边缘位错附近的氮原子的静电势变化显著,变化量可达1伏特,这表明位错附近的电子环境与体材料有显著不同,对电子能量损失谱的解释提出了挑战。

  4. 不同电荷状态下位错的电子结构: 研究还考虑了不同电荷状态下(中性、带电)的边缘和螺旋位错的电子结构。发现带电位错会改变位错核心的原子结构,从而影响其电子性质。

  5. 位错对EEL光谱的影响: 通过模拟位错核心的EEL光谱,研究发现位错会导致在导带边缘以下的额外吸收。此外,位错的存在还会导致核心激发EEL光谱的变化,这些变化与位错附近的原子结构和电荷分布有关。

机理解释:

  1. 能隙态的形成: 位错的存在导致了晶体结构的畸变,这种畸变在位错核心附近形成了能隙态。这些态是由于位错引起的局部原子排列变化和未饱和键的结果,它们可以捕获电荷并影响材料的电子输运性质。

  2. 静电势的变化: 位错附近的原子受到不同的机械应力,这会导致局部电场的变化。这种电场变化会影响原子的核心能级,从而影响核心激发EEL光谱。

  3. 位错电荷状态的影响: 位错的电荷状态会影响其核心的原子结构和电子分布。带电位错会通过电子-空穴对的形成来稳定其结构,这会导致位错核心的能隙态进一步改变。

  4. EEL光谱的敏感性: EEL光谱是一种非常敏感的技术,可以用来探测材料中的微小变化。位错引起的电子结构变化会直接反映在EEL光谱中,因此,通过分析EEL光谱可以揭示位错的性质和影响。

研究的创新点和亮点:

  1. 本研究首次系统地模拟了GaN中边缘和螺旋位错的EEL光谱,为理解位错对电子性质的影响提供了新的视角。
  2. 通过比较不同电荷状态下位错的电子结构,揭示了位错电荷对能隙态的调控作用。
  3. 研究提出了一种新的EEL光谱解释方法,考虑了位错引起的电场变化对核心能级的移动,为实验数据分析提供了新的理论基础。

研究意义与应用前景:

本研究对GaN材料中的位错缺陷进行了深入的理论研究,有助于指导实验上对位错进行控制和改良,从而优化材料的电子性能。这对于提高GaN基器件的性能,如高效率的发光二极管和高频率的电子器件,具有重要的实际意义。此外,研究方法和理论模型可推广应用于其他半导体材料的位错研究,具有广泛的应用前景。

图 1: 理论能带结构 。展示了计算得到的氮化镓(GaN)和氮化铝(AlN)的能带结构。图中分别用虚线和实线表示了将镓的3d电子作为价带或核心电子时的能带结构。通过将计算得到的带隙与实验值对齐,可以看出理论模型与实验观测的一致性。

图 2: 低损耗EEL光谱比较。比较了实验数据(十字标记)和理论计算(线条)得到的块体GaN和AlN的低损耗EEL光谱。图中展示了电子束在垂直于c轴的x,y平面内(实线)和平行于c轴的z方向(虚线)的EEL光谱。通过这种比较,作者验证了理论模型的准确性,并为后续研究位错对EEL光谱影响提供了基础。

图 3: 中性GaN边缘位错的弛豫结构 。图的上半部分展示了使用两种不同超胞技术得到的中性GaN边缘位错的弛豫结构。图中的白色和灰色分别代表氮和镓原子。图中还标记了核心原子列的索引。下半部分展示了相应的能带结构,其中顶部和底部半能隙态分别表示为空态和满态。

图 4: GaN边缘位错的局域态波函数 这张图展示了GaN边缘位错中局域态的波函数等值面。图中左右两个面板分别展示了较低和较高能级的局域态。白色和黑色分别代表氮和镓原子,图中的等值面仅突出显示了波函数的中心峰。

图 5: 带电GaN边缘位错的能带结构 这张图展示了带有一个额外电子的GaN边缘位错的能带结构。这是通过在带有位错的超胞中添加电子并放松结构得到的。图中的实线将满态和空态分开。

图 6: 中性GaN螺旋位错的结构 图的左右两列分别展示了两种中性“0001”螺旋位错的模型:全核心结构(a)和镓核心结构(b)。顶部面板展示了在(12¯10)平面上的投影结构,中间面板展示了在“0001”平面上的投影结构,下半部分展示了相应的能带结构。

图 7: 中性GaN边缘位错的EEL光谱 这张图比较了包含中性GaN边缘位错的区域(线条)和块体GaN(符号)的计算EEL光谱。结果展示了电子束沿x, y和z方向的光谱,图中还考虑了超胞中的真空区域。

图 8: 带电GaN边缘位错的EEL光谱 这张图比较了包含带电GaN边缘位错的区域(线条)和块体GaN(符号)的计算EEL光谱。图中展示了在带电状态下位错结构放松后的光谱。

图 9: 中性GaN螺旋位错的EEL光谱 这张图展示了包含中性GaN螺旋位错的区域(线条)和块体GaN(符号)的计算EEL光谱。图中考虑了全核心结构和镓核心结构,并且展示了电子束沿x, y和z方向的光谱。

图 10: N核心能级在GaN边缘位错附近的电势变化 这张图展示了中性GaN边缘位错附近氮原子核心能级的电势变化。图中的势能值相对于超胞中所有氮原子的平均势能给出。

图 11: N K-edge核心激发EEL光谱 这张图展示了GaN边缘位错处的N K-edge核心激发EEL光谱(粗线),与块体区域的光谱(细线)进行了比较。能量标尺参照价带顶部设置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1027320.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索 2024 年 Web 开发最佳前端框架

前端框架通过简化和结构化的网站开发过程改变了 Web 开发人员设计和实现用户界面的方法。随着 Web 应用程序变得越来越复杂,交互和动画功能越来越多,这是开发前端框架的初衷之一。 在网络的早期,网页相当简单。它们主要以静态 HTML 为特色&a…

ArcGIS Pro横向水平图例

终于知道ArcGIS Pro怎么调横向图例了! 简单的像0一样 旋转,左转右转随便转 然后调整图例项间距就可以了,参数太多就随便试,总有一款适合你! 要调整长度,就调整图例块的大小。完美! 好不容易…

大型矿业集团安全知识竞赛主持词

男:尊敬的各位领导,员工同志们: 合:大家好! 男;首先让我们以热烈的掌声对公司领导亲临比赛现场指导观看表示欢迎! 男;继成功开展了荣辱观专题讲座、好矿嫂女红艺术展、安全谜语竞猜…

ArcGIS制作风向频率玫瑰图

风玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向、风速发生频率,又分为“风向玫瑰图”和“风速玫瑰图” ;因图形似玫瑰花朵,故名。风玫瑰图对于涉及城市规划、环保、风力发电等领域有着重要的意义。风玫瑰图能够直观的显现某地区不同方位风向的频率特征,进…

Python拆分PDF、Python合并PDF

WPS能拆分合并&#xff0c;但却是要输入编辑密码&#xff0c;我没有。故写了个脚本来做拆分&#xff0c;顺便附上合并的代码。 代码如下&#xff08;extract.py) #!/usr/bin/env python """PDF拆分脚本(需要Python3.10)Usage::$ python extract.py <pdf-fil…

TitanIDE与传统 IDE 比较

与传统IDE的比较 TitanIDE 和传统 IDE 属于不同时代的产物&#xff0c;在手工作坊时代&#xff0c;一切都是那么的自然&#xff0c;开发者习惯 Windows 或 MacOS 原生 IDE。不过&#xff0c;随着时代的变迁&#xff0c;软件行业已经步入云原生时代&#xff0c;TitanIDE 是顺应…

Switch 和 PS1 模拟器:3000+ 游戏随心玩 | 开源日报 No.174

Ryujinx/Ryujinx Stars: 26.1k License: MIT Ryujinx 是用 C# 编写的实验性任天堂 Switch 模拟器。 该项目旨在提供出色的准确性和性能、用户友好的界面以及稳定的构建。它已经通过了大约 4050 个测试&#xff0c;其中超过 4000 个可以启动并进入游戏&#xff0c;其中大约 340…

从小白-入门-进阶-高阶,四个阶段详细讲解单片机学习路线!

大家好&#xff0c;今天给大家介绍从小白-入门-进阶-高阶&#xff0c;四个阶段详细讲解单片机学习路线&#xff01;&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 单片机学习路…

第18次修改了可删除可持久保存的前端html备忘录

第17次修改了可删除可持久保存的前端html备忘录&#xff1a;增加年月日星期&#xff0c;增加倒计时&#xff0c;更改保存区名称可以多个备忘录保存不一样的信息&#xff0c;匹配背景主题&#xff1a;现代深色 <!DOCTYPE html> <html lang"zh"> <head&…

C语言例4-27:计算1+2+...+100之和(利用while语句实现)。

代码如下&#xff1a; //计算12...100之和&#xff08;利用while语句实现&#xff09;。 #include<stdio.h> int main(void) {int n1, sum0;while(n<100){ //复合语句作为当型循环结构的循环体sumsumn;n;}printf("sum %d\n",sum);retu…

Capture One Pro 22 for Mac/win:重塑RAW图像处理的艺术

在数字摄影的世界里&#xff0c;RAW图像处理软件无疑是摄影师们手中的魔法棒&#xff0c;而Capture One Pro 22无疑是这一领域的璀璨明星。这款专为Mac和Windows系统打造的图像处理软件&#xff0c;以其出色的性能、丰富的功能和极致的用户体验&#xff0c;赢得了全球摄影师的广…

ES6 学习(三)-- es特性

文章目录 1. Symbol1.1 使用Symbol 作为对象属性名1.2 使用Symbol 作为常量 2. Iterator 迭代器2.1 for...of循环2.2 原生默认具备Interator 接口的对象2.3 给对象添加Iterator 迭代器2.4 ... 解构赋值 3. Set 结构3.1 初识 Set3.2 Set 实例属性和方法3.3 遍历3.4 相关面试题 4…

代码学习记录29----贪心最后一天

随想录日记part29 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.03.28 主要内容&#xff1a;今天是学习贪心算法最后一天&#xff0c;接下来是针对题目的讲解&#xff1a;1.单调递增的数字;2.监控二叉树; 3. 总结 738.单调递增的数字 968.监控二叉树 总结 To…

【直播课】2024年PostgreSQL CM认证实战培训课程于4月27日开课!

课程介绍 了解关注开源技术&#xff0c;学习PG以点带面 Linux/Andriod&#xff08;操作系统&#xff09;、Apache/Tomcat&#xff08;应用服务器&#xff09;、OpenStack/KVM&#xff08;虚拟化&#xff09;、Docker/K8S&#xff08;容器化&#xff09;、Hadoop&#xff08;大…

通过WSL在阿里云上部署Vue项目

参考&#xff1a; 阿里云上搭建网站-CSDN博客 云服务器重装 关闭当前运行实例 更换操作系统&#xff0c;还有其他的进入方式。 选择ubuntu系统&#xff08;和WSL使用相同的系统&#xff09;。 设置用户和密码。发送短信验证码。 新系统更新。秒速干净的新系统设置完成。 这…

玩电脑突然停电对电脑有影响吗

在现代社会中&#xff0c;电脑已成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;当我们正在专注于工作或娱乐时&#xff0c;突然停电可能会给我们带来不小的困扰。那么&#xff0c;玩电脑时突然停电会对电脑产生哪些影响呢&#xff1f;本文将深入探讨这一问题&…

踩坑uniapp中打包Andiord app,在真机调试时地图以及定位功能可以正常使用,打包成app后失效的问题

首先看到这是uni官网提出的&#xff0c;app上建议使用高德地图。 下面就用高德地图进行配置。 步骤一&#xff1a;登陆高德地图控制台 名称和类型根据自己情况填写选择即可 步骤二&#xff1a; 添加key 步骤三&#xff1a;取到SHA1 进入uniapp开发官网 点击应用名称&#…

Chrome 插件 tabs API 解析

Chrome.tabs API 解析 使用 chrome.tabs API 与浏览器的标签页系统进行交互&#xff0c;可以使用此 API 在浏览器中创建、修改和重新排列标签页 Tabs API 不仅提供操作和管理标签页的功能&#xff0c;还可以检测标签页的语言、截取屏幕截图&#xff0c;以及与标签页的内容脚本…

asp.net开发中小程序端跟后端交互中的发现

小程序端wxml端代码示例&#xff1a; <button bind:tap"test">提交</button>小程序端js代码示例&#xff1a; test(){console.log(ok)wx.request({url: https://localhost:44375/lianxi01.aspx,})},asp.net端代码示例&#xff1a; cs端代码示例&#x…

二维双指针,滑动窗口

二维双指针 思路&#xff1a;考虑暴力做法&#xff0c;我们统计前缀和&#xff0c;然后枚举以 ( x 1 , y 1 ) (x_1,y_1) (x1​,y1​), ( x 2 , y 2 ) (x_2,y_2) (x2​,y2​)为左上&#xff0c;右下顶点的矩阵有多少是合法的&#xff0c;那么&#xff0c;这样的时间复杂度为 n 4…