【Linux C | 多线程编程】线程的创建、线程ID、线程属性

news/2024/4/27 17:55:21/文章来源:https://blog.csdn.net/wkd_007/article/details/136766318

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀
🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C++、数据结构、音视频🍭
⏰发布时间⏰:2024-03-22 09:05:41

本文未经允许,不得转发!!!

目录

  • 🎄一、概述
  • 🎄二、线程的创建 pthread_create
  • 🎄三、线程ID
    • ✨2.1 线程ID相关函数
    • ✨2.2 线程ID复用
  • 🎄四、线程属性
  • 🎄五、总结


在这里插入图片描述

🎄一、概述

Linux线程库接口包括线程的创建、 退出、 取消和分离, 以及连接已经终止的线程, 互斥量, 读写锁,线程的条件等待等。

POSIX 函数函数功能描述
pthread_create创建一个线程
pthread_exit退出线程
pthread_self获取线程ID
pthread_equal检查两个线程ID是否相等
pthread_join等待线程退出
pthread_detach设置线程状态为分离状态
pthread_cancel线程的取消
pthread_cleanup_push、pthread_cleanup_pop线程退出,清理函数注册和执行

在代码里使用到上述接口函数时,使用gcc编程过程中需要加-pthread选项。

本文将介绍线程创建相关的一些知识,从pthread_create开始,然后依次介绍该函数第一个参数相关的线程ID,以及第二个函数相关的线程属性。


在这里插入图片描述

🎄二、线程的创建 pthread_create

程序开始启动的时候, 产生的进程只有一个线程, 我们称之为主线程或初始线程。 对于单线程的进程而言, 只存在主线程一个线程。 如果想在主线程之外, 再创建一个或多个线程, 就需要 pthread_create 函数。

pthread_create 函数原型:

#include <pthread.h>
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine) (void *), void *arg);Compile and link with -pthread.
  • 函数描述:函数 pthread_create 在调用过程中启动一个新线程。新线程通过调用 start_routine 参数指向的函数开始执行;arg参数作为 start_routine 的唯一参数传递。
  • 函数参数:
    • thread:传出参数,thread参数是 pthread_t 类型的指针,线程创建成功的话,会将分配的线程ID填入该指针指向的地址。线程的后续操作将使用该值作为线程的唯一标识。
    • attr:传入参数,第二个参数是 pthread_attr_t 类型,通过该参数可以定制线程的属性,比如可以指定新建线程栈的大小、调度策略等。 如果创建线程无特殊的要求, 该值也可以是NULL, 表示采用默认属性。
    • start_routine:传入参数,第三个参数是线程需要执行的函数。创建线程,是为了让线程执行一定的任务。线程创建成功之后,该线程就会执行start_routine函数,该函数之于线程,就如同 main 函数之于主线程。
    • arg:第四个参数是新建线程执行的 start_routine 函数的入参。新建线程如果想要正常工作,则可能需要入参,那么主线程在调用 pthread_create 的时候,就可以将入参的指针放入第四个参数以传递给新建线程。如果多个入参,可以使用结构体指针。
  • 函数返回值:如果成功,则 pthread_create 返回0;如果不成功,则 pthread_create 返回一个非0的错误码。pthread_create函数有点不同, 它会将errno作为返回值, 而不是一个负值。
    • EAGAIN:系统资源不够,或者创建线程的个数超过系统对一个进程中线程总数的限制
    • EINVAL:第二个参数attr值不合法
    • EPERM:没有合适的权限来设置调度策略或参数

通过上面的描述可以看到,pthread_create 是一个"四针"函数,也就是说它四个参数都是指针。下面是这个函数的简单使用示例:

// 02_pthread_create
// 编译:gcc 02_pthread_create.c -l pthread
#include <stdio.h>
#include <pthread.h>
void *func(void *arg)
{int *parg = arg;printf("this thread arg is %d \n", *parg);return NULL;
}
int main()
{int arg=10;pthread_t threadId;pthread_create(&threadId, NULL, func, &arg);while(1); // 让主线程不退出return 0;
}

在这里插入图片描述

🎄三、线程ID

通过 pthread_create 成功创建线程后,第一个参数会返回所创建线程的线程ID,这个线程ID不同于使用系统调用函数syscall(SYS_gettid)获得的线程ID。syscall(SYS_gettid)的ID是进程调度的范畴;而这里返回的线程ID是操作系统调度器用来标识线程的。

pthread_t到底是个什么样的数据结构呢? 因为POSIX标准并没有限制pthread_t的数据类型, 所以该类型取决于具体实现。 对于Linux目前使用的NPTL实现而言, pthread_t类型的线程ID, 本质就是一个进程地址空间上的一个地址。

typedef unsigned long int pthread_t;

pthread_t类型在Linux系统中定义在 <bits/pthreadtypes.h>头文件中,在Ubuntu可以使用命令vi /usr/include/bits/pthreadtypes.h 来查看,其完整定义如上,是unsigned long int类型的。

✨2.1 线程ID相关函数

关于线程ID,线程库NPTL提供了pthread_selfpthread_equal 两个函数来操作线程ID,它们的函数原型如下:

#include <pthread.h>
pthread_t pthread_self(void);
int pthread_equal(pthread_t t1, pthread_t t2);Compile and link with -pthread.

pthread_self函数用于在线程指向函数中获取自身线程ID,这个函数不会调用失败,返回值就是线程ID;

pthread_equal函数用于比较两个线程ID是否相等,返回值是0的时候, 表示两个线程是同一个线程, 非零值则表示不是同一个线程。注意,比较线程ID只有在同一个进程中才有意义。

🌰举例子:

// 03_pthreadID.c
// gcc 03_pthreadID.c -l pthread
#include <stdio.h>
#include <pthread.h>
void *func1(void *arg)
{int *parg = arg;printf("this thread arg is %d, my threadID is %lx \n", *parg, (unsigned long)pthread_self());while(1); // 让线程不退出
}
void *func2(void *arg)
{pthread_t *parg = arg;printf("other threadId is %lx, my threadID is %lx \n", (unsigned long)*parg, (unsigned long)pthread_self());while(1); // 让线程不退出
}
int main()
{int arg=10;pthread_t threadId_1;pthread_create(&threadId_1, NULL, func1, &arg);pthread_t threadId_2;pthread_create(&threadId_2, NULL, func2, &threadId_1);if(0 == pthread_equal(threadId_1,threadId_1))printf("same threads\n");elseprintf("different threads\n");while(1); // 让主线程不退出return 0;
}

✨2.2 线程ID复用

在满足下列条件时, 线程ID就有可能会被复用:
1) 线程退出。
2) 线程组的其他线程对该线程执行了pthread_join, 或者线程退出前将分离状态设置为已分离。
3) 再次调用pthread_create创建线程。

看例子:

// 04_pthreadID_reuse.c
// gcc 04_pthreadID_reuse.c -l pthread
#include <stdio.h>
#include <pthread.h>
void *func(void *arg)
{int *parg = arg;printf("this thread arg is %d, my threadID is %lx \n", *parg, (unsigned long)pthread_self());return NULL;
}int main()
{int arg=10;pthread_t threadId;pthread_create(&threadId, NULL, func, &arg);pthread_join(threadId,NULL); // 等待线程退出pthread_create(&threadId, NULL, func, &arg);while(1); // 让主线程不退出return 0;
}

运行结果,可以看到两次的线程ID是一样的:
在这里插入图片描述


在这里插入图片描述

🎄四、线程属性

pthread_create 的第二个参数是线程属性,先看看 pthread_attr_t 结构体的定义:

typedef struct
{int						detachstate;		//线程的分离状态int						schedpolicy;		//线程调度策略struct sched_param		schedparam;			//线程的调度参数int						inheritsched;		//线程的继承性int						scope;				//线程的作用域(竞争范围)size_t					guardsize;			//线程栈末尾的警戒缓冲区大小int						stackaddr_set;		//线程的栈设置void *                  stackaddr;			//线程栈的位置size_t					stacksize;			//线程栈的大小
}pthread_attr_t;int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);   
功能:初始化/销毁线程的属性结构体
  • detachstate:分离状态

    • PTHREAD_CREATE_JOINABLE(默认值):线程执行完函数后不会自行释放资源;
    • PTHREAD_CANCEL_DEFERRED:线程执行完函数后,会自行终止并释放占用的资源。

    系统提供两个函数获取、设置分离状态。另外,pthread_detach函数也可以设置线程分离。

    int pthread_attr_getdetachstate(const pthread_attr_t * attr,int * detachstate);
    int pthread_attr_setdetachstate(pthread_attr_t *sttr,int detachstate);
    
  • schedpolicy:调度策略

    • SCHED_OTHER(默认值):普通策略(分时调度算法),按照优先级调度
    • SCHED_FIFO:先进先出。一个FIFO会持续执行,直到线程阻塞、结束、有更高优先级的线程就绪
    • SCHED_RR:轮转策略。给每个线程分配执行时间(时间片),当一个线程的时间片耗尽时,下一个线程执行

    其中,SCHED_OTHER 调度算法不支持为线程设置优先级,而另外两种调度算法支持。获取、设置的函数如下:

    int pthread_attr_getschedpolicy(const pthread_attr_t *, int * policy)
    int pthread_attr_setschedpolicy(pthread_attr_*, int policy)
    
  • schedparam:调度参数
    用于设置线程的优先级(默认值为 0),该属性仅当线程的 schedpolicy 属性为 SCHED_FIFO 或者 SCHED_RR 时才能发挥作用。

    int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param *param);
    int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param *param);
    struct sched_param param; // sched_param 只有一个字段 sched_priority 
    param.sched_priority = 99;
    
  • inheritsched:继承性

    • PTHREAD_INHERIT_SCHED 调度属性(schedpolicy、schedparam)继承自创建者的
    • PTHREAD_EXPLICIT_SCHED 使用attr创建的线程,从attr指定的值中获取其调度属性(schedpolicy、schedparam)。

    获取、设置函数如下:

    int pthread_attr_setinheritsched(pthread_attr_t *attr,int inheritsched);
    int pthread_attr_getinheritsched(pthread_attr_t *attr,int *inheritsched);
    
  • scope:作用域(竞争范围)

    • PTHREAD_SCOPE_SYSTEM:在系统范围内竞争资源
    • PTHREAD_SCOPE_PROCESS:在进程范围内竞争资源

    线程执行过程中,可以只和同进程内的其它线程争夺 CPU 资源,也可以和系统中所有的其它线程争夺 CPU 资源,scope 属性用于指定目标线程和哪些线程抢夺 CPU 资源。获取、设置函数如下:

    int pthread_attr_setscope(pthread_attr_t *attr, int scope);
    int pthread_attr_getscope(pthread_attr_t *attr, int *scope);
    
  • guardsize:线程栈末尾的警戒缓冲区大小
    每个线程中,栈内存的后面都紧挨着一块空闲的内存空间,我们通常称这块内存为警戒缓冲区,它的功能是:一旦我们使用的栈空间超出了额定值,警戒缓冲区可以确保线程不会因“栈溢出”立刻执行崩溃。

    int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);
    int pthread_attr_getguardsize(pthread_attr_t *attr, size_t *guardsize);
    
  • stackaddr_set:线程的栈设置

    int pthread_attr_setstack(pthread_attr_t *attr,void *stackaddr, size_t stacksize);
    int pthread_attr_getstack(pthread_attr_t *attr,void **stackaddr, size_t *stacksize);
    
  • stackaddr:线程栈的位置

    int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
    int pthread_attr_getstackaddr(pthread_attr_t *attr, void **stackaddr);
    
  • stacksize:线程栈的大小

    int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
    int pthread_attr_getstacksize(pthread_attr_t *attr, size_t *stacksize);
    

🌰举例子:

// 05_dispaly_attr.c  这是man手册的一个展示线程属性的例子,可以仔细研究以下
// gcc 05_dispaly_attr.c -l pthread
#define _GNU_SOURCE     /* To get pthread_getattr_np() declaration */
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>#define handle_error_en(en, msg) \do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)static void
display_pthread_attr(pthread_attr_t *attr, char *prefix)
{int s, i;size_t v;void *stkaddr;struct sched_param sp;s = pthread_attr_getdetachstate(attr, &i);if (s != 0)handle_error_en(s, "pthread_attr_getdetachstate");printf("%sDetach state        = %s\n", prefix,(i == PTHREAD_CREATE_DETACHED) ? "PTHREAD_CREATE_DETACHED" :(i == PTHREAD_CREATE_JOINABLE) ? "PTHREAD_CREATE_JOINABLE" :"???");s = pthread_attr_getscope(attr, &i);if (s != 0)handle_error_en(s, "pthread_attr_getscope");printf("%sScope               = %s\n", prefix,(i == PTHREAD_SCOPE_SYSTEM)  ? "PTHREAD_SCOPE_SYSTEM" :(i == PTHREAD_SCOPE_PROCESS) ? "PTHREAD_SCOPE_PROCESS" :"???");s = pthread_attr_getinheritsched(attr, &i);if (s != 0)handle_error_en(s, "pthread_attr_getinheritsched");printf("%sInherit scheduler   = %s\n", prefix,(i == PTHREAD_INHERIT_SCHED)  ? "PTHREAD_INHERIT_SCHED" :(i == PTHREAD_EXPLICIT_SCHED) ? "PTHREAD_EXPLICIT_SCHED" :"???");s = pthread_attr_getschedpolicy(attr, &i);if (s != 0)handle_error_en(s, "pthread_attr_getschedpolicy");printf("%sScheduling policy   = %s\n", prefix,(i == SCHED_OTHER) ? "SCHED_OTHER" :(i == SCHED_FIFO)  ? "SCHED_FIFO" :(i == SCHED_RR)    ? "SCHED_RR" :"???");s = pthread_attr_getschedparam(attr, &sp);if (s != 0)handle_error_en(s, "pthread_attr_getschedparam");printf("%sScheduling priority = %d\n", prefix, sp.sched_priority);s = pthread_attr_getguardsize(attr, &v);if (s != 0)handle_error_en(s, "pthread_attr_getguardsize");printf("%sGuard size          = %ld bytes\n", prefix, v);s = pthread_attr_getstack(attr, &stkaddr, &v);if (s != 0)handle_error_en(s, "pthread_attr_getstack");printf("%sStack address       = %p\n", prefix, stkaddr);printf("%sStack size          = 0x%lx bytes\n", prefix, v);
}static void *
thread_start(void *arg)
{int s;pthread_attr_t gattr;/* pthread_getattr_np() is a non-standard GNU extension thatretrieves the attributes of the thread specified in itsfirst argument */s = pthread_getattr_np(pthread_self(), &gattr);if (s != 0)handle_error_en(s, "pthread_getattr_np");printf("Thread attributes:\n");display_pthread_attr(&gattr, "\t");exit(EXIT_SUCCESS);         /* Terminate all threads */
}int main(int argc, char *argv[])
{pthread_t thr;pthread_attr_t attr;pthread_attr_t *attrp;      /* NULL or &attr */int s;attrp = NULL;/* If a command-line argument was supplied, use it to set thestack-size attribute and set a few other thread attributes,and set attrp pointing to thread attributes object */if (argc > 1) {int stack_size;void *sp;attrp = &attr;s = pthread_attr_init(&attr);if (s != 0)handle_error_en(s, "pthread_attr_init");s = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);if (s != 0)handle_error_en(s, "pthread_attr_setdetachstate");s = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);if (s != 0)handle_error_en(s, "pthread_attr_setinheritsched");stack_size = strtoul(argv[1], NULL, 0);s = posix_memalign(&sp, sysconf(_SC_PAGESIZE), stack_size);if (s != 0)handle_error_en(s, "posix_memalign");printf("posix_memalign() allocated at %p\n", sp);s = pthread_attr_setstack(&attr, sp, stack_size);if (s != 0)handle_error_en(s, "pthread_attr_setstack");}s = pthread_create(&thr, attrp, &thread_start, NULL);if (s != 0)handle_error_en(s, "pthread_create");if (attrp != NULL) {s = pthread_attr_destroy(attrp);if (s != 0)handle_error_en(s, "pthread_attr_destroy");}pause();    /* Terminates when other thread calls exit() */
}

运行结果,打印一些默认值:
在这里插入图片描述


在这里插入图片描述

🎄五、总结

本文介绍了线程创建相关的内容,包括pthread_create函数的详细介绍和使用例子,然后依次介绍该函数第一个参数相关的线程ID知识以及第二个参数相关的线程属性知识。读完完整地了解线程的创建。

补充:
进程的地址空间:
1、Linux系统中,/proc/sys/vm/legacy_va_layout文件的值会影响进程地址空间的布局。默认值是0,表示mmap区域的基地址在栈的下面, mmap区域从高地址向低地址扩展;若值为1, 那么mmap的基地址mmap_base变小(约在128T的三分之一处),mmap区域从低地址向高地址扩展。

2、使用命令 pmap PIDcat /proc/PID/maps 可以查看进程的地址空间:
在这里插入图片描述

在这里插入图片描述
如果文章有帮助的话,点赞👍、收藏⭐,支持一波,谢谢 😁😁😁

参考资料:
https://blog.csdn.net/qq_41854911/article/details/118719001
《Linux环境编程:从应用到内核》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1027091.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

#Linux(SSH软件安装及简单使用)

&#xff08;一&#xff09;发行版&#xff1a;Ubuntu16.04.7 &#xff08;二&#xff09;记录&#xff1a; &#xff08;1&#xff09;终端键入&#xff08;root权限&#xff09;安装 apt-get install openssh-server 安装时遇到报错 E: Could not get lock /var/lib/dpkg/…

如何用c解决汉诺塔问题!

汉诺塔&#xff08;Tower of Hanoi&#xff09;&#xff0c;又称河内塔&#xff0c;是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子&#xff0c;在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重…

深入解析Spring MVC: 原理、流程【面试版】

什么是SpringMV? 1.是一个基于MVC的web框架&#xff1b; 2.是spring的一个模块&#xff0c;是spring的子容器&#xff0c;子容器可以拿父容器的东西&#xff0c;但是反过来不可&#xff1b; 2.SpringMVC的前端控制器是DispatcherServlet&#xff0c;用于分发请求。使开发变…

Git工具的详细使用

一、环境说明 [rootgit ~]# getenforce Disabled [rootgit ~]# systemctl status firewalld ● firewalld.service - firewalld - dynamic firewall daemonLoaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)Active: inactive (d…

数据库的横表和竖表

先来看个图: 定义如下&#xff1a; 横表&#xff1a;在一行数据中包含了所有的属性&#xff0c;一行就代表了一个完整的实体 竖表&#xff1a;在一行中只存储一个实体的一个属性&#xff0c;多个行组合在一起才组成一个完整的属性适用场景&#xff1a; 横表&#xff1a;对查…

使用easyYapi生成文档

easyYapi生成文档 背景1.安装配置1.1 介绍1.2 安装1.3 配置1.3.1 Export Postman1.3.2 Export Yapi1.3.3 Export Markdown1.3.4 Export Api1.3.6 常见问题补充 2. java注释规范2.1 接口注释规范2.2 出入参注释规范 3. 特定化支持3.1 必填校验3.2 忽略导出3.3 返回不一致3.4 设置…

术语技巧:如何格式化网页中的术语

术语是语言服务中的核心语言资产。快速处理英汉对照的术语是我们在翻译技术学习过程中需要掌握的必备技能。 通常&#xff0c;我们需要把在权威网站上收集到的术语放到word当中&#xff0c;调整正左右对齐的样式&#xff0c;便于打印学习或者转化为Excel表。 如何快速实现这一…

【QT入门】 Qt代码创建布局之setLayout使用

往期回顾&#xff1a; 【QT入门】 Qt代码创建布局之水平布局、竖直布局详解-CSDN博客 【QT入门】 Qt代码创建布局之栅格布局详解-CSDN博客 【QT入门】 Qt代码创建布局之分裂器布局详解-CSDN博客 【QT入门】 Qt代码创建布局之setLayout使用 一、setLayout 1、什么是setLayout …

Day42:WEB攻防-PHP应用MYSQL架构SQL注入跨库查询文件读写权限操作

目录 PHP-MYSQL-Web组成架构 PHP-MYSQL-SQL常规查询 手工注入 PHP-MYSQL-SQL跨库查询 跨库注入 PHP-MYSQL-SQL文件读写 知识点&#xff1a; 1、PHP-MYSQL-SQL注入-常规查询 2、PHP-MYSQL-SQL注入-跨库查询 3、PHP-MYSQL-SQL注入-文件读写 MYSQL注入&#xff1a;&#xff…

酒店能源监测管理系统:实现节能减排与提升管理效率的利器

随着全球能源问题的日益突出和可持续发展理念的深入人心&#xff0c;酒店业也在积极探索节能减排的途径。在这一背景下&#xff0c;酒店能源监测管理系统应运而生&#xff0c;成为了酒店行业提升管理效率、降低能源消耗的重要工具。本文将从多个角度介绍酒店能源监测管理系统的…

yolov9目标检测可视化图形界面GUI源码

一&#xff1a;软件简介 该系统是由微智启软件工作室基于yolov9pyside6开发的目标检测可视化界面系统 功能介绍&#xff1a; 支持图片、摄像头、视频检测、文件夹目标检测支持修改成自己的yolov9模型&#xff0c;自定义识别&#xff08;需是未改进网络训练的数据集&#xff09;…

腾讯云免费云服务器申请流程详解

随着云计算的普及&#xff0c;越来越多的企业和个人开始选择使用云服务器。腾讯云作为国内领先的云计算服务提供商&#xff0c;为用户提供了丰富的云产品和服务。本文将为大家详细介绍腾讯云免费云服务器的申请流程。 一、注册腾讯云账号 首先&#xff0c;需要注册一个腾讯云账…

Linux基础系统设置与备份策略

文章目录 Linux基础系统设置网络设置(手动设置与DHCP自动获取)&#xff1a;nmcli、hostname日期与时间设置&#xff1a;timedatectl、ntpdate语系设置防火墙简易设置 Linux 服务器硬件数据的收集&#xff1a;dmidecode、lspci、lsusb、iostat了解磁盘的健康状态Linux 备份要点确…

Stable Diffusion XL之核心基础内容

Stable Diffusion XL之核心基础内容 一. Stable Diffusion XL核心基础内容1.1 Stable Diffusion XL的主要优化1.2 SDXL整体架构初识1.3 VAE模型1.VAE基本介绍2. VAE基本模型结构3.VAE的训练 1.4 U-Net模型&#xff08;Base部分&#xff09;1. 十四个基本模块概述2. SDXL_Spatia…

Java全栈课程之Linux———基本属性

一、看懂文件属性 Linux系统是一种典型的多用户系统&#xff0c;不同的用户处于不同的地位&#xff0c;拥有不同的权限。为了保护系统的安全性&#xff0c;Linux系统对不同的用户访问同一文件&#xff08;包括目录文件&#xff09;的权限做了不同的规定。 在Linux中我们可以使…

QT控件之显示控件

Qt Designer显示窗口部件提供的面板中&#xff0c;提供了10种显示小部件 &#xff08;1&#xff09; Label标签 &#xff08;2&#xff09; Text Browser文本浏览器 &#xff08;3&#xff09; Graphics View图形视图 &#xff08;4&#xff09; Calendar Widget日历 &…

【iOS ARKit】3D文字

首先&#xff0c;3D场景中渲染的任何虚拟元素都必须具有网格&#xff08;顶点及顶点间的拓扑关系&#xff09;&#xff0c;没有网格的元素无法利用GPU 进行渲染&#xff0c;因此&#xff0c;在3D 场景申渲染 3D文字时&#xff0c;文字也必须具有网格。在计算机系统中&#xff0…

鸿蒙hdc使用指导

简介 hdc&#xff08;HarmonyOS Device Connector&#xff09;是HarmonyOS为开发人员提供的用于调试的命令行工具&#xff0c;通过该工具可以在windows/linux/mac系统上与真实设备或者模拟器进行交互。 环境准备 hdc工具通过HarmonyOS SDK获取&#xff0c;存放于SDK的toolch…

Swagger3探索之游龙入海

引言 后端开发中常用的接口调用工具一般使用Postman、ApiPost工具&#xff0c;但后期需要与前端联调&#xff0c;要补充接口文档花费大量时间&#xff0c;此时Swagger3应运而生&#xff0c;大大提高沟通交流的效率。 引用依赖 <!-- Swagger3 调用方式 http://ip:port/swa…

taro框架之taro-ui中AtSwipeAction的使用

题记&#xff1a;所需效果&#xff1a;滑动删除 工作进程 官网文档代码 <AtSwipeAction options{[{text: 取消,style: {backgroundColor: #6190E8}},{text: 确认,style: {backgroundColor: #FF4949}} ]}><View classNamenormal>AtSwipeAction 一般使用场景</…