Python和MATLAB数字信号波形和模型模拟

news/2024/5/30 1:50:13/文章来源:https://blog.csdn.net/jiyotin/article/details/136722257

要点

  1. Python和MATLAB实现以下波形和模型模拟
    1. 以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。
    2. 快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。
    3. 离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提取正确的相位谱,从频域样本重建时域信号。
    4. 功率谱密度:使用数值计算库NumPy和科学计算包SciPy以及韦尔奇功率谱密度估计方法 绘制载波调制信号的功率谱密度。
    5. 信号功率:生成的 10 个正弦波周期并绘图,使用数值库NumPy计算信号功率,使用科学计算包SciPy计算频域中总功率。
    6. 信号中多项式:SciPy计算托普利茨矩阵
    7. 信号卷积计算方法:暴力方法计算卷积矢量,托普利茨矩阵方法,快速傅里叶变换方法,对比不同方法计算结果。
    8. 使用频域方法生成分析信号,研究分析信号的组成部分,使用傅立叶变换进行希尔伯特变换:演示从实值调制信号构造的分析信号中提取瞬时幅度和相位,演示使用希尔伯特变换简单的相位解调。
    9. 使用二元相移键控调制传入二元流的函数,解调二元相移键控信号,使用二元相移键控调制的信息传输波形模拟生成。
    10. 差分编码和差分解码波形模拟生成
    11. 差分编码二元相移键控调制解调模拟波形
    12. 使用正交相移键控调制传入的二元流模拟波形,解调正交相移键控模拟波形
    13. 偏移正交相移键控调制解调模拟波形
    14. 差分编码偏移正交相移键控调制解调相位映射器和调制解调

信号处理Python示例

信号处理是一门科学领域,涉及信号从时域到频域的处理,反之亦然,平滑信号,从信号中分离噪声,即过滤,从信号中提取信息。自然界中存在的信号都是连续信号。连续时间(或模拟)信号存在于连续间隔 ( t 1 , t 2 ) (\mathrm{t} 1, \mathrm{t} 2) (t1,t2) 范围从 − ∞ -\infty + ∞ +\infty +

模拟量转数字量

  • 采样:采样是将连续时间信号还原为离散时间信号。一个常见的例子是将声波(连续信号)转换为样本序列(离散时间信号)
  • 量化:量化是将输入值从大集合(通常是连续集合)映射到(可数)较小集合(通常具有有限数量的元素)中的输出值的过程。 路由和截断是量化过程的典型示例。
  • 编码:对每个样本进行量化并确定每个样本的位数后,可以将每个样本变为nb位码字。每个样本的位数由量化级别的数量确定。
import numpy as np
import matplotlib.pyplot as pltimport scipy
from scipy import signal
t = np.arange(0, 11)
x = (0.85) ** t

连续信号

plt.figure(figsize = (10,8)) # set the size of figure# 1. Plotting Analog Signal
plt.subplot(2, 2, 1)
plt.title('Analog Signal', fontsize=20)plt.plot(t, x, linewidth=3, label='x(t) = (0.85)^t')
plt.xlabel('t' , fontsize=15)
plt.ylabel('amplitude', fontsize=15)
plt.legend(loc='upper right')# 2. Sampling and Plotting of Sampled signal
plt.subplot(2, 2, 2)
plt.title('Sampling', fontsize=20)
plt.plot(t, x, linewidth=3, label='x(t) = (0.85)^t')
n = tmarkerline, stemlines, baseline = plt.stem(n, x, label='x(n) = (0.85)^n')
plt.setp(stemlines, 'linewidth', 3)
plt.xlabel('n' , fontsize = 15)
plt.ylabel('amplitude', fontsize = 15)
plt.legend(loc='upper right')# 3. Quantization
plt.subplot(2, 2, 3)
plt.title('Quantization', fontsize = 20)plt.plot(t, x, linewidth =3)
markerline, stemlines, baseline=plt.stem(n,x)
plt.setp(stemlines, 'linewidth', 3)
plt.xlabel('n', fontsize = 15)
plt.ylabel('Range of Quantizer', fontsize=15)plt.axhline(y = 0.1, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.2, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.3, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.4, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.5, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.6, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.7, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.8, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.9, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 1.0, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)plt.subplot(2, 2, 4)
plt.title('Quantized Signal', fontsize = 20)
xq = np.around(x,1)
markerline, stemlines, baseline = plt.stem(n,xq)
plt.setp(stemlines, 'linewidth', 3) 
plt.xlabel('n', fontsize = 15)
plt.ylabel('Range of Quantizer', fontsize=15)plt.axhline(y = 0.1, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.2, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.3, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.4, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.5, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.6, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.7, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.8, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 0.9, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)
plt.axhline(y = 1.0, xmin = 0, xmax = 10, color = 'r', linewidth = 3.0)plt.tight_layout()

单位脉冲信号

impulse = signal.unit_impulse(10, 'mid')
shifted_impulse = signal.unit_impulse(7, 2)# Sine wave
t = np.linspace(0, 10, 100)
amp = 5 # Amplitude
f = 50
x = amp * np.sin(2 * np.pi * f * t)# Exponential Signal
x_ = amp * np.exp(-t)
plt.figure(figsize=(10, 8))plt.subplot(2, 2, 1)
plt.plot(np.arange(-5, 5), impulse, linewidth=3, label='Unit impulse function')
plt.ylim(-0.01,1)
plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')plt.subplot(2, 2, 2)
plt.plot(shifted_impulse, linewidth=3, label='Shifted Unit impulse function')plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')plt.subplot(2, 2, 3)
plt.plot(t, x, linewidth=3, label='Sine wave')plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')plt.subplot(2, 2, 4)
plt.plot(t, x_, linewidth=3, label='Exponential Signal')plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')plt.tight_layout()

正弦波

# Sine wave
n = np.linspace(0, 10, 100)
amp = 5 # Amplitude
f = 50
x = amp * np.sin(2 * np.pi * f * n)# Exponential Signal
x_ = amp * np.exp(-n)

离散信号

plt.figure(figsize=(12, 8))plt.subplot(2, 2, 1)
plt.stem(n, x, 'yo', label='Sine wave')plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')plt.subplot(2, 2, 2)
plt.stem(n, x_, 'yo', label='Exponential Signal')plt.xlabel('time.', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.legend(fontsize=10, loc='upper right')

傅里叶变换

傅里叶变换是分析信号的强大工具,可用于从音频处理到图像处理再到图像压缩的各个领域。傅里叶分析是研究如何将数学函数分解为一系列更简单的三角函数的领域。 傅立叶变换是该领域的一种工具,用于将函数分解为其分量频率。 换句话说,傅立叶变换是一种工具,可让您获取信号并查看其中每个频率的功率。 看看这句话中的重要术语:

  • 信号是随时间变化的信息。例如,音频、视频和电压迹线都是信号的示例。
  • 频率是某事物重复的速度。例如,时钟以一赫特 (Hz) 的频率滴答,或每秒重复一次。
  • 在这种情况下,功率仅指每个频率的强度。

下图是一些正弦波的频率和功率的直观演示:

高频正弦波的峰值比低频正弦波的峰值更接近,因为它们重复得更频繁。低功率正弦波的峰值比其他两个正弦波小。

傅立叶变换在许多应用中都很有用。 图像压缩使用傅立叶变换的变体来去除图像的高频分量。 语音识别使用傅里叶变换和相关变换从原始音频中恢复口语单词。

一般来说,如果您需要查看信号中的频率,则需要傅立叶变换。如果在时域处理信号很困难,那么使用傅立叶变换将其移至频域值得尝试。

参阅一:计算思维
参阅二:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1007639.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习Android的第二十八天

目录 Android Service (服务) 线程 Service (服务) Service 相关方法 Android 非绑定 Service startService() 启动 Service 验证 startService() 启动 Service 的调用顺序 Android 绑定 Service bindService() 启动 Service 验证 BindService 启动 Service 的顺序 …

Day42-企业级网络存储NFS01

Day42-企业级网络存储NFS01 1. 什么是NFS?2. 为什么要用网络共享存储?3. 共享存储的种类4. NFS工作原理5. 环境准备6. NFS软件列表7. 安装8. 配置nfs9. 项目实践作业:10. ()权限 对应参数11. 在生产中配置NFS的重要技巧:12. 项目实…

R语言深度学习-1-深度学习入门(H2O包安装报错解决及接入/H2O包连接数据集)

本教程参考《RDeepLearningEssential》 1.1 深度学习概念 深度学习是机器学习的一个子集,它特别指的是那些试图模拟人脑工作原理的算法和技术。这种类型的机器学习通过使用多层的人工神经网络来学习和表示数据的内在规律和层次结构。深度学习已经在多个领域取得了…

华为OD技术C卷“测试用例执行计划”Java解答

描述 示例 算法思路1 整体思路是,先读取特性的优先级和测试用例覆盖的特性列表,然后计算每个测试用例的优先级,并将其与测试用例的索引存储到二维数组中。最后按照优先级和索引排序,输出测试用例的索引,即为执行顺序。…

Ajax学习笔记(一):原生AJAX、HTTP协议、AJAX案例准备工作、发送AJAX请求、AJAX 请求状态

目录 一、原生AJAX 1.1AJAX 简介 1.2 XML 简介 1.3 AJAX的特点 二、HTTP协议 三、AJAX案例准备工作 四、发送AJAX请求 1.发送GET请求 2.发送POST请求 3.JSON响应 IE缓存问题: 五、AJAX 请求状态 一、原生AJAX 1.1AJAX 简介 AJAX 全称为 Asynchronous …

强化学习工具箱(Matlab)

1、Get Started 1.1、MDP环境下训练强化学习智能体 MDP环境如下图 每个圆圈代表一个状态每个状态都有上或下的选择智能体从状态 1 开始智能体接收的奖励值为图中状态转移的值训练目标是最大化累计奖励 (1)创建 MDP 环境 创建一个具有 8 个状态和 2 …

[Kali] 安装Nessus及使用

在官方网站下载对应的 Nessus 版本:Download Tenable Nessus | TenableDownload Nessus and Nessus Managerhttp://www.tenable.com/products/nessus/select-your-operating-system这里选择 Kali 对应的版本 一、安装 Nessus 1、下载得到的是 deb 文件,与

html5cssjs代码 018颜色表

html5&css&js代码 018颜色表 一、代码二、效果三、解释 这段代码展示了一个基本的颜色表&#xff0c;方便参考使用&#xff0c;同时也应用了各种样式应用方式。 一、代码 <!DOCTYPE html> <html lang"zh-cn"> <head><title>编程笔记…

ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接。

发生的错误信息&#xff1a; File "C:\Users\malongqiang\.conda\envs\ObjectDetection\lib\ssl.py", line 1309, in do_handshakeself._sslobj.do_handshake() ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接。 分析原因&#xff1a; …

2024年了,关键词还重要吗?(川圣SEO)蜘蛛池

baidu搜索:如何联系八爪鱼SEO? baidu搜索:如何联系八爪鱼SEO? baidu搜索:如何联系八爪鱼SEO? 是的&#xff0c;关键词仍然非常重要。 无论在哪个年份&#xff0c;关键词都是搜索引擎优化&#xff08;SEO&#xff09;的重要组成部分&#xff0c;它们帮助搜索引擎理解网页…

电源常用电路—驱动电路详解

数字电源控制核心对输入输出参数进行采集后&#xff0c;利用控制算法进行分析从而产生PWM控制信号&#xff0c;PWM信号将经过驱动电路的进行功率放大和隔离&#xff0c;随后接入功率开关器件从而完成电源的输出控制。本篇将主要针对电源的驱动电路进行讲解。 一、驱动电路概述…

【论文阅读】

4. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads 出处&#xff1a;2019 USENIX-TAC 大规模多租户GPU集群对DNN训练工作负载的分析 主要工作&#xff1a;描述了Microsoft中一个多租户GPU集群两个月的工作负载特征&#xff0c;研究影响多租户…

WanAndroid(鸿蒙版)开发的第五篇

前言 DevEco Studio版本&#xff1a;4.0.0.600 WanAndroid的API链接&#xff1a;玩Android 开放API-玩Android - wanandroid.com 其他篇文章参考&#xff1a; 1、WanAndroid(鸿蒙版)开发的第一篇 2、WanAndroid(鸿蒙版)开发的第二篇 3、WanAndroid(鸿蒙版)开发的第三篇 …

[云原生] Prometheus自动服务发现部署

一、部署服务发现 1.1 基于文件的服务发现 基于文件的服务发现是仅仅略优于静态配置的服务发现方式&#xff0c;它不依赖于任何平台或第三方服务&#xff0c;因而也是最为简单和通用的实现方式。 Prometheus Server 会定期从文件中加载 Target 信息&#xff0c;文件可使用 YAM…

<JavaEE> 了解网络层协议 -- IP协议

目录 初识IP协议 什么是IP协议&#xff1f; IP协议中的基础概念 IP协议格式 图示 4bit版本号&#xff08;version&#xff09; 4bit头部长度&#xff08;headerlength&#xff09; 8bit服务类型&#xff08;TypeOfService&#xff09; 16bit总长度&#xff08;total l…

Python Web开发记录 Day10:Django part4 靓号管理与优化

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 1、数据库准备2、靓号列表3、新建靓号4、编辑靓…

点胶缺陷视觉检测都是怎么检测的?

点胶工艺是许多工业生产中不可或缺的一环&#xff0c;而点胶缺陷的存在往往直接影响到产品质量。为了提升点胶工艺的品质控制&#xff0c;点胶缺陷的视觉检测成为了一个重要的技术手段。 一、点胶缺陷的类型 点胶缺陷主要包括胶点大小不均、位置偏移、漏点、多点等。这些缺陷如…

基于word2vec 和 fast-pytorch-kmeans 的文本聚类实现,利用GPU加速提高聚类速度

文章目录 简介GPU加速 代码实现kmeans聚类结果kmeans 绘图函数相关资料参考 简介 本文使用text2vec模型&#xff0c;把文本转成向量。使用text2vec提供的训练好的模型权重进行文本编码&#xff0c;不重新训练word2vec模型。 直接用训练好的模型权重&#xff0c;方便又快捷 完整…

selenium 网页自动化-在访问一个网页时弹出的浏览器窗口,我该如何处理?

前言 相信大家在使用selenium做网页自动化时&#xff0c;会遇到如下这样的一个场景&#xff1a; 在你使用get访问某一个网址时&#xff0c;会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而&#xff0c;很不幸&#xff0c;Alert类处理的结果就是没…

springboot273基于JavaWeb的宠物商城网站设计与实现

宠物商城网站的设计与实现 摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;商品信息因为其管理内容繁杂&#xff0c;管理数量繁多导…