为什么大多数大型网站不是用Java写的

news/2024/4/27 13:46:38/文章来源:https://blog.csdn.net/huangkelong/article/details/2279312

国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




国庆长假,老外在热烈的讨论这个话题,

原文地址: http://natishalom.typepad.com/nati_shaloms_blog/2007/10/why-most-scalab.html

我摘录部分观点如下:

Most of these sites are using LAMP as the core runtime stack

Some develop their own file system (Google, GFS)

Some are using caching to solve the database bottleneck (memcached and the like)


--


introducing similar solutions for addressing the scalability challenges: 在解决伸缩性方面的尝试:

On the Data Tier we see the following:

1. Adding a caching layer to take advantage of memory resources

availability and reduce I/O overhead
2. Moving from a database-centric approach to partitioning, aka shards

注:shards是google贡献给hibernate的一个项目,他是hibernate的一个扩展,可以

透明的实现数据的分布存储。至于如何分布存储由你自己定义策略,例如典型的

RoundRobinShardSelectionStrategy

 

On the Business Logic Tier:

3. Adding parallelization semantics to the application tier (e.g.,

MapReduce)
注:MapReduce是Google开发的C++编程工具,用于大规模数据集(大于1TB)的并行运算。MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。MapReduce会生成大量的临时文件,为了提高效率,它利用Google文件系统来管理和访问这些文件。


4. Moving to scale-out application models to achieve linear scalability
注:
scaling:the ability of an application to address growth in throughput,

usage, and capacity
有两种策略:scale out 和 scale up
scale up vs scale out 的区别在于:
 1 Reliance on hardware versus reliance on software
 2 Equation with "first-class" hardware versus "commodity" hardware
 3 Massive versus incremental capacity increases
 4 Centralized versus partitioned application architectures
简单的说就是一个靠提升单个硬件的配置,另一个靠用低端配置实现集群


5. Moving away from the classic two-phase commit and XA for transaction

processing  (See: Lessons from Pat Helland: Life Beyond Distributed

Transactions)
注: 不使用传统的分布式事务处理,例如EJB的事务,使用新的基于space的中间件平台 Space Based Architecture (SBA) and GigaSpaces XAP




本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_865829.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

邀请PHP开发工程师加盟Web3.0新锐网站[工作地点-北京财智国际大厦]

我们的大方向是: 如何更快、更准地帮助用户找到他所需要的信息。这也就是以前搜索引擎诞生的原因。但搜索引擎仅仅是一种解决办法,而且还远不完美。这将是我们致力的方向。我们的两个理念是: 按主题重组织全网内容; 按人…

郑昀邀请网站开发工程师架构师加盟Web3.0新锐网站[工作地点-北京财智国际大厦]

公司新年新气象,刚刚换到了一个大办公室,也离中关村更近了。随着公司规模的扩大,开始了新一轮的招兵买马,哈哈。请各位帮忙看看有没有合适的人选推荐,不胜感谢! 招聘:研发部 招聘岗位1:PHP网站架…

网站制作流程及界面交互设计

网站制作流程及界面交互设计研究探讨 作者的blog: http://www.onling.net/blog/ 很多朋友希望,我能把我做网站的一些流程及经验跟大家分享一下,最近刚好做一次内部培训,所以稍微整理了一下,这些只是针对网页初学者,具…

从LiveJournal后台发展看大规模网站性能优化方法

一、LiveJournal发展历程 LiveJournal是99年始于校园中的项目,几个人出于爱好做了这样一个应用,以实现以下功能: 博客,论坛 社会性网络,找到朋友 聚合,把朋友的文章聚合在一起LiveJournal采用了大量的开源…

Mysql在大型网站的应用架构演变

原创文章,转载请注明: 转载自http://www.cnblogs.com/Creator/ 本文链接地址: Mysql在大型网站的应用架构演变 写在最前: 本文主要描述在网站的不同的并发访问量级下,Mysql架构的演变 可扩展性 架构的可扩展性往往和并发是息息相关&#xff0…

50个好网站,从此请不要再虚度上网!

《意林意林》,短小精悍的小故事,每次都能打动读者的心扉! http://www.yilin.net.cn 丁香园,一个生物学和医学专业的挚爱。http://www.dxy.cn 生物谷,看了名字就知道是生物类的网站。http://www.bioon.com 《环球科学…

大型网站架构之分布式消息队列

以下是消息队列以下的大纲,本文主要介绍消息队列概述,消息队列应用场景和消息中间件示例(电商,日志系统)。 本次分享大纲 消息队列概述消息队列应用场景消息中间件示例JMS消息服务常用消息队列参考(推荐&am…

一步步构建大型网站架构

之前我简单向大家介绍了各个知名大型网站的架构,MySpace的五个里程碑、Flickr的架构、YouTube的架构、PlentyOfFish的架构、WikiPedia的架构。这几个都很典型,我们可以从中获取很多有关网站架构方面的知识,看了之后你会发现你原来的想法很可能…

网站缓存技术总结( ehcache memcache redis)

网站技术高速发展的今天,缓存技术已经成为大型网站的一个关键技术,缓存设计好坏直接关系的一个网站访问的速度,以及购置服务器的数量,甚至影响到用户的体验。 网站缓存按照存放的地点不同,可以分为客户端缓存、服务端…

HTML(一)创建站点 基本架构

HTML 创建站点 – 环境:VScode 创建站点:包含基本文件 VScode 配置 插件安装: 插件 将文件夹添加至工作区: 文件 – 将文件夹添加到工作区 – 选择文件夹 新建 html 文档 : 工作区选中文件夹中,C…

网站优化 14条--雅虎十四条优化原则

相信互联网已经越来越成为人们生活中不可或缺的一部分。Ajax,flex等等富客户端的应用使得人们越加“幸福”地体验着许多原先只能在C/S实 现的功 能。比如Google机会已经把最基本的office应用都搬到了互联网上。当然便利的同时毫无疑问的也使页面的速度越来越慢。自己…

打造IIS网站的专用“护心甲”—实战SSL加密

Windows网络操作系统内置的IIS是大家最常用的Web服务器。但在系统默认配置下,IIS使用的是“HTTP协议”以明文形式传输数据,没有采用任何加密手段,传输的重要数据很容易被窃取。这对于一些安全性要求高的网站来说,是远远不够的。为…

【HTML】网站TDK三大标签SEO优化

1.title网站标题 2.description网站说明 3.keywords关键词

Google 联合一些社交网站来对抗 facebook

谷歌 (Google) 将与其它一些行业领先的社交网站联手,共同对抗互联网新贵Facebook。  谷歌将于周四推出一个通用标准集 ( OpenSocial ),允许软件开发者为谷歌旗下社交网站Orkut,以及LinkedIn、hi5、Friendster、Plaxo和Ning等其它社交网站…

CSDN 未来网站内容Tag架构猜想

大概是上周吧,写了一篇blog主观的分析了一下CSDN目前的内容架构,收到许多朋友好的意见和建议,在此首先对他们表示感谢。网络变化真的很快,现在的网站内容架构较2,3年前已经有翻天覆地的变化。很多人也提出了“如今的网…

搜索引擎SEO外挂:一边搜索,一边看PageRank

搜索引擎SEO外挂:一边搜索,一边看PageRank 下载地址:多么乐站长工具 我原来曾写过一篇统计分析搜索引擎排名和Page Rank 关联分析 的文章。很多人引用,回复和我讨论了我的结论。有赞成的,有反对的,有鼓励的…

实际采用 FleaPHP 的网站

下面都是采用 FleaPHP 框架开发的网站列表,如果发现无效连接请在留言。 如果你有采用 FleaPHP 开发的网站,并且愿意公开网址,可以发邮件到 dualface (at) gmail.com 需要提供的信息包括网站名称和连接地址,以及简单的介绍文字。 云…

【从0开始Tornado建站】注册

基本的注册功能有用户名、密码和密码确认&#xff0c;当然邮箱确认和基本信息填写在高阶的时候完善&#xff0c;现在只完成基本功能。在register.html写如下内容&#xff1a; {%extends main.html%}{%block content%} <p classtext-danger>注册用户名不支持中文</p>…

【从0开始Tornado建站】主页的登录和显示最新文章

登录只要放在主页就可以了&#xff0c;这里为了美观&#xff0c;把<form>用bootstrap的form-inline类修饰&#xff0c;如下样子&#xff1a; 前台代码如下&#xff1a; {%extends main.html%} {%block header%} <ul classnav nav-pills><li><a href/ clas…

【从0开始Tornado建站】显示所有注册用户

显示注册用户的前台主要代码如下&#xff1a; {%block content%} <ul>{%for i in users%}<li><a href/user/{{i[1]}} classtext-success h4>{{i[1]}}<small>&#xff08;{{i[3]}}星级&#xff09;</small></a></li>{%end%}<br/&g…