二进制部署K8S

news/2024/4/26 15:51:34/文章来源:https://blog.csdn.net/abjava1/article/details/129129569

目录

一、环境准备

1、常见的k8s部署方式

2、关闭防火墙

3、关闭selinux

4、关闭swap

5、根据规划设置主机名

6、在master添加hosts

7、将桥接的IPv4流量传递到iptables的链

8、时间同步

二、部署etcd集群

1、master节点部署

2、查看证书的信息

2.1 创建k8s工作目录

2.2 上传etcd-cert.sh 和etcd.sh 到/opt/k8s/ 目录中

2.3 创建用于生成CA证书、etcd服务器证书以及私钥的目录

2.4 生成CA证书、etcd服务器证书以及私钥

2.5 上传etcd-v3.3.10-1inux-amd64.tar.gz 到/opt/k8s/ 目录中,解压etcd 压缩包

3、etcdctl主要为etcd服务提供了命令行操作

3.1 创建用于存放etcd配置文件,命令文件,证书的目录

3.2 进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

3.3 另外打开一个窗口查看etcd进程是否正常

3.4 把etcd相关证书文件和命令文件全部拷贝到另外两个etcd集群节点

3.5 把etcd服务管理文件拷贝到另外两个etcd集群节点

4、在node1与node2节点修改

4.1 在node1节点修改

4.2 在node2节点修改

5、在master1节点上进行启动

5.1 首先在master1节点上进行启动

5.2 接着在node1和node2节点分别进行启动

5.3 在master1 节点上操作

5.4 检查etcd群集状态

6、部署docker引擎

6.1 所有node节点部署docker引擎

三、flannel网络配置

1、flannel网络配置

Flannel工作原理:

2、在master1 节点 添加flannel 网络配置信息

2.1 在node01 节点上操作

3、在所有master节点上操作

3.1 修改docker服务管理文件,配置docker连接flannel

3.2 重启docker服务

3.3 ifconfig #查看flannel网络

3.4 测试ping通对方docker0网卡 证明flannel起到路由作用

四、部署master组件

1、在master1 节点上操作

1.1 上传master.zip 和k8s-cert.sh 到/opt/k8s 目录中,解压master.zip 压缩包

1.2 创建kubernetes工作目录

1.3 创建用于生成CA证书、相关组件的证书和私钥的目录

2、生成CA证书、相关组件的证书和私钥

2.1 复制CA证书、apiserver 相关证书和私钥到kubernetes. 工作目录的ssl子目录中

2.2 上传kubernetes-server-linux-amd64.tar.gz 到/opt/k8s/ 目录中,解压kubernetes 压缩包

2.3 复制master组件的关键命令文件到kubernetes. 工作目录的bin子目录中

2.4 创建bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用RBAC给他授权

2.5 使用 head -c 16 /dev/urandom | od -An -t x | tr -d ' '可以随机生成序列号,并创建token.csv文件,也可以使用脚本创建

3、检查进程是否启动成功

3.1 k8s通过kube- apiserver这 个进程提供服务,该进程运行在单个master节点上。默认有两个端口6443和8080

3.2 查看版本信息(必须保证apiserver启动正常,不然无法查询到server的版本信息)

3.3 启动scheduler 服务

3.4 启动controller-manager服务

4、生成kubectl连接集群的证书

4.1 查看节点状态

五、部署node组件

1、部署node组件

1.1在master1 节点上操作,把kubelet、 kube-proxy拷贝到node 节点

1.2 上传node.zip到/opt 目录中,解压node.zip 压缩包,获得kubelet.sh、 proxy.sh

1.3 创建用于生成kubelet的配置文件的目录

1.4 上传kubeconfig.sh 文件到/opt/k8s/kubeconfig目录中

1.5 生成kubelet的配置文件

1.6 把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷贝到node节点

1.7 RBAC授权,将预设用户kubelet-bootatrap 与内置的ClusterRole system:node-bootatrapper 绑定到一起,使其能够发起CSR请求

1.8 查看角色

1.9 查看已授权的角色

1.10 使用kubelet.sh脚本启动kubelet服务

1.11 检查kubelet服务启动

1.12 此时还没有生成证书

1.13 在master1 节点上操作//检查到node1 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书

1.14 通过CSR请求

1.15 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

1.16 查看群集节点状态,成功加入node1节点

1.17 自动生成证书和kubelet.kubeconfig文件

1.18 加载ip_vs模块

1.19 使用proxy.sh脚本启动proxy服务 

1.20 在node1 节点上将kubelet.sh、 proxy.sh 文件拷贝到node2 节点

1.21 使用kubelet.sh脚本启动kubelet服务 

1.22 在master1 节点上操作,检查到node2 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.

1.23 通过CSR请求

1.24 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

1.25 查看群集节点状态,成功加入node1节点

1.26 在node2 节点 加载ip_vs模块

1.27 使用proxy.sh脚本启动proxy服务

1.28 测试连通性


一、环境准备

k8s集群master1:192.168.2.66 kube-apiserver kube-controller-manager kube-scheduler etcd

k8s集群node1: 192.168.2.200 kubelet kube-proxy docker flannel

k8s集群node2: 192.168.2.77 kubelet kube-proxy docker flannel

至少2C2G

1、常见的k8s部署方式

Mini kube

Minikube是一个工具,可以在本地快速运行一个单节点微型K8s,仅用于学习预览K8s的一些特性使用
部署地址: https: / /kubernetes.io/docs/setup/minikube

Kubeadmin

Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单
https: / /kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

二进制安装部署

生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8s集群,新手推荐
https: / /github.com/kubernetes/kubernetes/releases

小结:kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查,如果想更容易可控,推荐使用二进制包部署kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

2、关闭防火墙

systemctl stop firewalld
systemctl disable firewalld

3、关闭selinux

setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

4、关闭swap

swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab

5、根据规划设置主机名

hostnamectl  set-hostname master01
hostnamectl  set-hostname node01
hostnamectl  set-hostname node02

6、在master添加hosts

cat >>  /etc/hosts <<EOF
192.168.2.66 master01
192.168.2.200 node01
192.168.2.77 node02
EOF

7、将桥接的IPv4流量传递到iptables的链

cat > /etc/sysctl.d/k8s.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-ip6tables = 1
EOF
sysctl --system

8、时间同步

yum -y install ntpdate
ntpdate time.windows.com

二、部署etcd集群

etcd作为服务发现系统,有以下的特点:

• 简单、安装配置简单,而且提供了HTTP API进行交互,使用也很简单

• 安全: 支持SSL证书验证

• 快速: 单实例支持每秒2k+读操作

• 可靠: 采用raft算法实现分布式系统数据的可用性和一致性

准备签发证书环境:

CFSSL是CloudFlare 公司开源的一款PKI/TLS工具。CESSL 包含一个命令行工具和一个用于签名、验证和捆绑TLS证书的HTTP API服务。使用Go语言编写。

CFSSL使用配置文件生成证书,因此自签之前,需要生成它识别的json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。

CFSSL用来为etcd提供TLS证书,它支持签三种类型的证书:

1、client证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如kube-apiserver 访问etcd;

2、server证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如etcd对外提供服务:

3、peer证书,相互之间连接时使用的证书,如etcd节点之间进行验证和通信。

这里全部都使用同一套证书认证。

注:etcd这里就不做集群了,直接部署在master节点上

1、master节点部署

下载证书制作工具

curl -L https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o /usr/local/bin/cfssl
curl -L https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o /usr/local/bin/cfssljson
curl -L https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o /usr/local/bin/cfssl-certinfo
或者
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo 
chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson /usr/local/bin/cfssl-certinfo chmod +x /usr/local/bin/cfssl 

-----------------------------------------------------

cfssl: 证书签发的工具命令

cfssljson: 将cfssl 生成的证书( json格式)变为文件承载式证书

cfssl-certinfo:验证证书的信息

cfssl-certinfo -cert <证书名称>

2、查看证书的信息

2.1 创建k8s工作目录

mkdir /opt/k8s
cd /opt/k8s/

2.2 上传etcd-cert.sh 和etcd.sh 到/opt/k8s/ 目录中

chmod +x etcd-cert.sh etcd. sh

2.3 创建用于生成CA证书、etcd服务器证书以及私钥的目录

mkdir /opt/k8s/etcd-certmv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh

2.4 生成CA证书、etcd服务器证书以及私钥

2.5 上传etcd-v3.3.10-1inux-amd64.tar.gz 到/opt/k8s/ 目录中,解压etcd 压缩包

cd /opt/k8s/
tar zxvf etcd-v3.3.10-linux-amd64.tar.gz
1s etcd-v3.3.10-linux-amd64
Documentation etcd etcdctl README-etcdctl.md README.md
READMEv2-etcdctl.md

==========================
etcd就是etcd服务的启动命令,后面可跟各种启动参数

3、etcdctl主要为etcd服务提供了命令行操作

3.1 创建用于存放etcd配置文件,命令文件,证书的目录

mkdir -p /opt/etcd/{cfg,bin,ssl}
mv /opt/k8s/etcd-v3.3.10-linux- amd64/etcd /opt/k8s/etcd-v3.3.10-1inux-amd64/etcdct1 /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
./etcd.sh etcd01 192.168.2.66 etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380

3.2 进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

3.3 另外打开一个窗口查看etcd进程是否正常

ps -ef | grep etcd  

3.4 把etcd相关证书文件和命令文件全部拷贝到另外两个etcd集群节点

scp -r /opt/etcd/ root@192.168.2.200:/opt/
scp -r /opt/etcd/ root@192.168.2.77:/opt/

3.5 把etcd服务管理文件拷贝到另外两个etcd集群节点

scp /usr/lib/systemd/system/etcd.service root@192.168.2.200:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.2.77:/usr/lib/systemd/system/

4、在node1与node2节点修改

4.1 在node1节点修改

cd /opt/etcd/cfg/
vim etcd
#[Member]
ETCD_NAME="etcd02"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.2.200:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.2.200:2379"#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.2.200:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.2.200:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.2.66:2380,etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl daemon-reload
systemctl enable --now etcd.service

4.2 在node2节点修改

cd /opt/etcd/cfg/
vim etcd
#[Member]
ETCD_NAME="etcd03"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.2.77:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.2.77:2379"#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.2.77:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.2.77:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.2.66:2380,etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl daemon-reload
systemctl enable --now etcd.service

5、在master1节点上进行启动

5.1 首先在master1节点上进行启动

cd /root/k8s/
./ etc.sh etcd01 192.168.2.66:2380 etcd02 192.168.2.200:2380 etcd03 192.168.2.77:2380

5.2 接着在node1和node2节点分别进行启动

systemctl start etcd.service

5.3 在master1 节点上操作

1n -s /opt/etcd/bin/etcd* /usr/1oca1/bin

5.4 检查etcd群集状态

cd /opt/etcd/ss1
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379" endpoint health --write-out=table

-----------------------------------------------
--cert-file:识别HTTPS端使用sSL证书文件
--key-file: 使用此SSL密钥文件标识HTTPS客户端
-ca-file:使用此CA证书验证启用https的服务器的证书
--endpoints:集群中以逗号分隔的机器地址列表
cluster-health:检查etcd集群的运行状况
-----------------------------------------------

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379" --write-out=table member list

6、部署docker引擎

6.1 所有node节点部署docker引擎

yum install -y yum-utils device-mapper-persistent-data 1vm2
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce dqsker-ce-cli containerd.iosystemctl start docker.service
systemctl enable docker.service

三、flannel网络配置

1、flannel网络配置

K8S中Pod网络通信:

●Pod内容器与容器之间的通信

在同一个Pod内的容器(Pod内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在网一台机器上一样,可以用localhost地址访间彼此的端口

●同一个Node内Pod之间的通信

每个Pod 都有一个真实的全局IP地址,同一个Node 内的不同Pod之间可以直接采用对方Pod的IP 地址进行通信,Pod1 与Pod2都是通过veth连接到同一个docker0 网桥,网段相同,所以它们之间可以直接通信

●不同Node上Pod之间的通信

Pod地址与docker0 在同一网段,dockor0 网段与宿主机网卡是两个不同的网段,且不同Nodo之间的通信贝能通过宿主机的物理网卡进行

要想实现不同Node 上Pod之间的通信,就必须想办法通过主机的物理网卡IP地址进行寻址和通信。

因此要满足两个条件:

Pod 的IP不能冲突:

将Pod的IP和所在的Node的IP关联起来,通过这个关联让不同Node上Pod之间直接通过内网IP地址通信。

=Overlay Network:=

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)

=VXLAN:=

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址

=Flannel:=

Flannel的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址

Flannel是Overlay 网络的一种,也是将TCP 源数据包封装在另一种网络 包里而进行路由转发和通信,目前己经支持UDP、VXLAN、AwS VPC等数据转发方式

=ETCD之Flannel 提供说明:=

存储管理Flanne1可分配的IP地址段资源
监控ETCD中每个Pod 的实际地址,并在内存中建立维护Pod 节点路由表

Flannel工作原理:

node1上的pod1 要和node2上的pod1进行通信

1.数据从node1上的Pod1源容器中发出,经由所在主机的docker0 虚拟网卡转发到flannel0虚拟网卡;

2.再由flanneld把pod ip封装到udp中(里面封装的是源pod IP和目的pod IP);

3.根据在etcd保存的路由表信息,通过物理网卡发送给目的node2的flanneld,来进行解封装暴露出udp里的pod IP;

4.最后根据目的pod IP经flannel0虚拟网卡和docker0虚拟网卡转发到目的pod中,最后完成通信

2、在master1 节点 添加flannel 网络配置信息

2.1 在node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bindocker load -i flannel.tar
docker images
scp -r cni/ flannel.tar 192.168.2.200:/opt

3、在所有master节点上操作

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml kubectl get pods -n kube-systemkubectl get nodes

3.1 修改docker服务管理文件,配置docker连接flannel

vim /lib/systemd/system/docker.service
[Service]
Type=notify
# the default is not to use systemd for cgroups because the delegate issues stillt
# exists and systemd currently dges not support the cgroup feature set requi red
# for containers run by docker
EnvironmentFile=/run/flannel/subnet.env
#添加
ExecStart=/usr/bin/dockerd $DOCKER_NETWORK_OPTIONS -H fd:// --containerd=/run/containerd/containerd.sock
#修改
ExecReload=/bin/kill -s HUP $MAINPID
TimeoutSec=0
RestartSec=2
Restart=always

3.2 重启docker服务

systemctl daemon-reload
systemctl restart docker

3.3 ifconfig #查看flannel网络

3.4 测试ping通对方docker0网卡 证明flannel起到路由作用

ping 172.17.21.1docker run -it centos:7 /bin/bash #node1和node2都运行该命令yum install net-tools -y #node1和node2都运行该命令ifconfig //再次测试ping通两个node中的centos:7容器

四、部署master组件

1、在master1 节点上操作

1.1 上传master.zip 和k8s-cert.sh 到/opt/k8s 目录中,解压master.zip 压缩包

cd /opt/k8s/
unzip master.zip
apiserver.sh
scheduler.sh
controller-manager.shchmod +x * .sh

1.2 创建kubernetes工作目录

mkdir -p /opt/kubernetes/{cfg,bin,ssl}

1.3 创建用于生成CA证书、相关组件的证书和私钥的目录

mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh

2、生成CA证书、相关组件的证书和私钥

//controller-manager和kube-scheduler设置为只调用当前机器的apiserver, 使用127.0.0.1:8080 通信,因此不需要签发证书

2.1 复制CA证书、apiserver 相关证书和私钥到kubernetes. 工作目录的ssl子目录中

cp ca*pem apiserver*pem /opt/kubernetes/ssl/

2.2 上传kubernetes-server-linux-amd64.tar.gz 到/opt/k8s/ 目录中,解压kubernetes 压缩包

cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz

2.3 复制master组件的关键命令文件到kubernetes. 工作目录的bin子目录中

cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
1n -s /opt/kubernetes/bin/* /usr/local/bin/

2.4 创建bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用RBAC给他授权

cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -e 16 /dev/urandom | od -An -t x | tr -d ‘ ’)
#生成token.csv 文件,按照Token序列号,用户名,UID,用户组的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
chmod +x token.sh
./token.sh./apiserver.sh 192.168.2.66 https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379

2.5 使用 head -c 16 /dev/urandom | od -An -t x | tr -d ' '可以随机生成序列号,并创建token.csv文件,也可以使用脚本创建

二进制文件,token,证书都准备好,开启apiserver

3、检查进程是否启动成功

ps aux | grep kube-apiserver

3.1 k8s通过kube- apiserver这 个进程提供服务,该进程运行在单个master节点上。默认有两个端口6443和8080

//安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证

//本地端口8080用于接收HTTP请求,非认证或授权的HTTP请求通过该端口访问APIServer

netstat -natp| grep 8080
netstat -natp | grep 6443

3.2 查看版本信息(必须保证apiserver启动正常,不然无法查询到server的版本信息)

kubectl version

3.3 启动scheduler 服务

cd /opt/k8s/
./scheduler.sh 127.0.0.1ps aux | grep kube-scheduler

3.4 启动controller-manager服务

cd /opt/k8s/
./controller-manager.sh 127.0.0.1

4、生成kubectl连接集群的证书

./admin.shkubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

4.1 查看节点状态

kubectl get cs

五、部署node组件

1、部署node组件

1.1在master1 节点上操作,把kubelet、 kube-proxy拷贝到node 节点

cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.229.80:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.229.70:/opt/kubernetes/bin/

在node1 节点上操作

1.2 上传node.zip到/opt 目录中,解压node.zip 压缩包,获得kubelet.sh、 proxy.sh

cd /opt/
unzip node.zip

在master1节点上操作

1.3 创建用于生成kubelet的配置文件的目录

mkdir /opt/k8s/kubeconfig

1.4 上传kubeconfig.sh 文件到/opt/k8s/kubeconfig目录中

#kubeconfig.sh文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群context
上下文参数(集群名称、用户名)。Kubenetes 组件(如kubelet、 kube-proxy) 通过启动时指定不同的kubeconfig文件可以切换到不同的集群,连接到apiserver

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh

1.5 生成kubelet的配置文件

cd /opt/k8a/kubeconfig
./kubeconfig.sh 192.168.2.66 /opt/k8s/k8s-cert/1s
bootstrap.kubeconfig kubeconfig.sh kube-proxy.kubeconfig

1.6 把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷贝到node节点

cd /opt/k8s/kubeconfig
scp bootstrap.kubeconfig kube-proxy-kubeconfig root@192.168.2.200:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.2.77:/opt/kubernetes/cfg/

1.7 RBAC授权,将预设用户kubelet-bootatrap 与内置的ClusterRole system:node-bootatrapper 绑定到一起,使其能够发起CSR请求

kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

kubelet采用TLS Bootstrapping 机制,自动完成到kube -apiserver的注册,在node节点量较大或者后期自动扩容时非常有用。
Master apiserver 启用TLS 认证后,node 节点kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与apiserver 通信,当node节点很多时,签署证书是一件很繁琐的事情。因此Kubernetes 引入了TLS bootstraping 机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver 申请证书,kubelet 的证书由apiserver 动态签署。

kubelet首次启动通过加载bootstrap.kubeconfig中的用户Token 和apiserver CA证书发起首次CSR请求,这个Token被预先内置在apiserver 节点的token.csv 中,其身份为kubelet-bootstrap 用户和system: kubelet- bootstrap用户组:想要首次CSR请求能成功(即不会被apiserver 401拒绝),则需要先创建一个ClusterRoleBinding, 将kubelet-bootstrap 用户和system:node - bootstrapper内置ClusterRole 绑定(通过kubectl get clusterroles 可查询),使其能够发起CSR认证请求。

TLS bootstrapping 时的证书实际是由kube-controller-manager组件来签署的,也就是说证书有效期是kube-controller-manager组件控制的; kube-controller-manager 组件提供了一个--experimental-cluster-signing-duration
参数来设置签署的证书有效时间:默认为8760h0m0s, 将其改为87600h0m0s, 即10年后再进行TLS bootstrapping 签署证书即可。

也就是说kubelet 首次访问API Server 时,是使用token 做认证,通过后,Controller Manager 会为kubelet生成一个证书,以后的访问都是用证书做认证了。
------------------------------------------

1.8 查看角色

kubectl get clusterroles | grep system:node-bootstrapper

1.9 查看已授权的角色

kubectl get clusterrolebinding

在node1节点上操作

1.10 使用kubelet.sh脚本启动kubelet服务

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.2.200

1.11 检查kubelet服务启动

ps aux | grep kubelet

1.12 此时还没有生成证书

ls /opt/kubernetes/ssl/

1.13 在master1 节点上操作
//检查到node1 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书

kubectl get csr

1.14 通过CSR请求

kubectl certificate approve node-csr-12DGPu__kpLSBsGUHpvGs6Q89B9aYysw9C61pAagDEA 

1.15 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

kubectl get csr

1.16 查看群集节点状态,成功加入node1节点

kubectl get nodes

在node1节点上操作

1.17 自动生成证书和kubelet.kubeconfig文件

ls /opt/kubernetes/cfg/kubelet.kubeconfig
ls /opt/kubernetes/ssl/

1.18 加载ip_vs模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F
filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

1.19 使用proxy.sh脚本启动proxy服务 

cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.2.200systemctl status kube-proxy.service

node2 节点部署
##方法一 :
1.20 在node1 节点上将kubelet.sh、 proxy.sh 文件拷贝到node2 节点

cd /opt/
scp kubelet.sh proxy.sh root@192.168.2.77:/opt/

1.21 使用kubelet.sh脚本启动kubelet服务 

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.2.77

1.22 在master1 节点上操作,检查到node2 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.

kubectl get csr

1.23 通过CSR请求

kubectl certificate approve node-csr-NOI-9vufTLIqJgMWq4fHPNPHKbjCX1DGHptj7FqTa8A

1.24 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

kubectl get csr

1.25 查看群集节点状态,成功加入node1节点

kubectl get nodes

1.26 在node2 节点 加载ip_vs模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

 1.27 使用proxy.sh脚本启动proxy服务

cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.2.77systemctl status kube-proxy.service

1.28 测试连通性

kubectl create deployment nginx-test --image=nginx:1.14
kubectl get pod
kubectl get pod
kubectl describe pod nginx-test-7dc4f9dcc9-vlzmk

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_71870.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL74 纠错2

描述供应商表Vendors有字段供应商名称vend_name、供应商国家vend_country、供应商省份vend_statevend_namevend_countryvend_stateappleUSACAvivoCNAshenzhenhuaweiCNAxian【问题】修改正确下面sql&#xff0c;使之正确返回SELECT vend_name FROM Vendors ORDER BY vend_name W…

【Redis】数据结构篇

一. String 字符串 常见用途&#xff1a;缓存用户信息&#xff0c;将用户信息结构体使用 JSON 序列化为字符串&#xff0c;然后将序列化后的字符串给 Redis 来缓存 Redis 字符串是动态字符串&#xff0c;是可以修改的字符串 —— 实现类似 ArrayList &#xff1f;&#xff1f…

【自动化测试】自动化测试框架那些事儿

无论是在自动化测试实践&#xff0c;还是日常交流中&#xff0c;经常听到一个词&#xff1a;框架。在教学的过程中&#xff0c;同学们一直对“框架”这个词知其然不知其所以然。 最近看了很多自动化相关的资料&#xff0c;加上一些实践&#xff0c;算是对“框架”有了一些理解…

什么是生命周期?Activity生命周期的三种状态

什么是生命周期生命周期就是一个对象从创建到销毁的过程&#xff0c;每一个对象都有自己的生命周期。同样&#xff0c;Activity也具有相应的生命周期&#xff0c;Activity的生命周期中分为三种状态&#xff0c;分别是运行状态、暂停状态和停止状态。接下来将针对Activity生命周…

CANopen概念总结、心得体会

NMT网络管理报文&#xff1a; NMT 主机和 NMT 从机之间通讯的报文就称为 NMT 网络管理报文。常见报文说明&#xff1a; 0101---------------网络报文发送Nmt_Start_Node&#xff0c;让电机进入OP模式(此时还不会发送同步信号) setState(d, Operational)------------------开启…

STM32 SystemInit()函数学习总结

拿到程序后如何看系统时钟&#xff1f;User文件夹——system_stm32f4xx程序&#xff0c;先找systemcoreclock(系统时钟&#xff09;但是这里这么多个系统时钟应该如何选择?点击魔法棒&#xff0c;然后点击C/C可以看到define的是F40_41XXX.USE这一款 &#xff0c;对应着就找出了…

虹科新品 | 最高80W!用于大基板紫外曝光系统的高功率UVLED光源

光刻曝光是指利用紫外光源将胶片或其他透明物体上的图像信息转移到涂有光敏材料&#xff08;光刻胶&#xff09;表面以得到高精度和极细微图案的一种制作工艺&#xff0c;主要用于半导体生产、高精密集成电路、PCB板制造、MEMS等行业。光刻技术是半导体工业和集成电路是最为核心…

SAP FICO 理解业务范围的概念

业务范围 以前转载过几篇关于业务范围的文章&#xff1a; SAP Business Area 业务范围_SAP剑客的博客-CSDN博客_sap 业务范围 SAP FI 系列 002&#xff1a;业务范围派生_stone0823的博客-CSDN博客_sap 业务范围 http://blog.sina.com.cn/s/blog_3f2c03e30102w9yz.html 仍是…

修改redis的配置文件使得windows的图形界面客户端可以连接redis服务器

一、redis自带的客户端&#xff08;了解&#xff0c;不方便&#xff09;进入到redis安装目录的bin目录下指定主机和端口# ./redis-cli -h 127.0.0.1 -p 6379127.0.0.1:6379> exit 【退出】-h&#xff1a;redis服务器的ip地址-p&#xff1a;redis实例的端口号如果不指定主机和…

Dropout

目录一、Dropout出现的原因二、什么是Dropout&#xff1f;三、为什么Dropout解决过拟合?3.1 取平均的作用3.2 减少神经元间复杂的共适应关系四、实现Dropout—— pytorchexample 1example 2example 3设置dropout参数技巧一、Dropout出现的原因 在机器学习的模型中 如果模型的…

“终于懂了” 系列:组件化框架 ARouter 完全解析(三)AGP/Transform/ASM—动态代码注入

ARouter系列文章&#xff1a; “终于懂了” 系列&#xff1a;组件化框架 ARouter 完全解析&#xff08;一&#xff09;原理全解 “终于懂了” 系列&#xff1a;组件化框架 ARouter 完全解析&#xff08;二&#xff09;APT—帮助类生成 “终于懂了” 系列&#xff1a;组件化框架…

拼多多出评软件工具榜单助手使用教程

软件使用教程下载软件前&#xff0c;关闭电脑的防火墙&#xff0c;退出所有杀毒软件&#xff0c;防止刷单软件被误删桌面建立一个文件夹&#xff0c;下载下来的安装包放进去&#xff0c;解压到当前文件夹&#xff0c;使用过程中别打开防火墙、杀毒软件。打开软件后&#xff0c;…

计算机系统基础知识

计算机的基本组成 计算机组成逻辑图 计算机部件作用 一级部件作用 运算器&#xff1a;计算机的执行部件&#xff0c;受控制器控制&#xff0c;执行算术运算或逻辑运算控制器&#xff1a;决定计算机运行过程的自动化。不仅能保证程序指令的正确执行&#xff0c;还能处理异常事…

代谢组+转录组分析为腰果树果实发育成熟过程中代谢网络提供见解

文章标题&#xff1a;Metabolomic and transcriptomic analyses provide insights into metabolic networks during cashew fruit development and ripening 发表期刊&#xff1a;Food Chemistry 影响因子&#xff1a;9.231 作者单位&#xff1a;海南大学 百趣生物提供服务…

matplotlib学习笔记(持续更新中…)

目录 1. 安装&#xff0c;导入 2. figure&#xff0c;axes&#xff08;图形&#xff0c;坐标图形&#xff09; 2.1 figure对象 2.2 axes对象 2.3 代码演示 2.3 subplot() 方法 3. 图表的导出 3.1 savefig() 方法 3.2 代码演示 1. 安装&#xff0c;导入 pip install m…

关于数字化营销技术实现之【数据埋点】

1.如何实现数据埋点&#xff1f;小程序数据埋点是指在小程序中收集用户行为数据和业务数据的一种技术手段&#xff0c;以便对用户行为和业务运营进行分析和优化。下面是一些实现小程序数据埋点的方法&#xff1a;使用小程序统计分析工具&#xff1a;小程序平台提供了统计分析工…

大数据周会-本周学习内容总结0102

目录 01、ElasticSearch-学习总结 02、SpringbootElasticSearch构建博客检索系统 01、将MySQL数据同步到ES中 02、SpringBoot集成ES 03、本周学习计划 第一次周会 大数据总监、搜狐四年-中国搜索 【mapReduce】sql 大数据代表&#xff1a;Hadoop、spark、es、flink zookee…

Python字符串处理 -- 内附蓝桥题:门牌制作,卡片

字符串处理 ~~不定时更新&#x1f383;&#xff0c;上次更新&#xff1a;2023/02/20 &#x1f5e1;常用函数&#xff08;方法&#xff09; 1. s.count(str) --> 计算字符串 s 中有多少个 str 举个栗子&#x1f330; s "1354111" print(s.count(1)) # 答案为…

Java-路径总和

每日一题 Java-路径总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。…

Pyspark基础入门4_RDD转换算子

Pyspark 注&#xff1a;大家觉得博客好的话&#xff0c;别忘了点赞收藏呀&#xff0c;本人每周都会更新关于人工智能和大数据相关的内容&#xff0c;内容多为原创&#xff0c;Python Java Scala SQL 代码&#xff0c;CV NLP 推荐系统等&#xff0c;Spark Flink Kafka Hbase Hi…