Pytorch Tutorial【Chapter 2. Autograd】

news/2024/4/27 23:23:45/文章来源:https://blog.csdn.net/qq_44940689/article/details/132112218

Pytorch Tutorial

文章目录

  • Pytorch Tutorial
    • Chapter 2. Autograd
      • 1. Review Matrix Calculus
        • 1.1 Definition向量对向量求导
        • 1.2 Definition标量对向量求导
        • 1.3 Definition标量对矩阵求导
      • 2.关于autograd的说明
      • 3. grad的计算
        • 3.1 Manual手动计算
        • 3.2 backward()自动计算
    • Reference

Chapter 2. Autograd

1. Review Matrix Calculus

1.1 Definition向量对向量求导

​ Define the derivative of a function mapping f : R n → R m f:\mathbb{R}^n\to\mathbb{R}^m f:RnRm as the n × m n\times m n×m matrix of partial derivatives. That is, if x ∈ R n , f ( x ) ∈ R m x\in\mathbb{R}^n,f(x)\in\mathbb{R}^m xRn,f(x)Rm, the derivative of f f f with respect to x x x is defined as
[ ∂ f ∂ x ] i j = ∂ f i ∂ x i \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}_{ij} = \frac{\partial f_i}{\partial x_i} [xf]ij=xifi
Let
x = [ x 1 x 2 ⋮ x n ] , f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f m ( x ) ] x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix} x= x1x2xn ,f(x)= f1(x)f2(x)fm(x)

then we define the Jacobian Matrix

∂ f ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 2 ∂ x 1 ⋯ ∂ f m ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 2 ⋯ ∂ f m ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ f 1 ∂ x n ∂ f 2 ∂ x n ⋯ ∂ f m ∂ x n ] \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \\ \end{bmatrix} xf= x1f1x2f1xnf1x1f2x2f2xnf2x1fmx2fmxnfm

1.2 Definition标量对向量求导

If f f f is scalar, one has

∂ f ∂ x = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \\ \end{bmatrix} xf= x1fx2fxnf
这其实是一种分母布局

1.3 Definition标量对矩阵求导

​ Now we give some results on the derivative of scalar functions of a matrix. Let X = [ x i j ] X=[x_{ij}] X=[xij] be a matrix of order m × n m\times n m×n and let y = f ( X ) y=f(X) y=f(X) be a scalar function of X X X. The derivative of y y y with respect to X X X, denoted by ∂ y ∂ X \frac{\partial y}{\partial X} Xy, is defined as the following matrix of order m × n m\times n m×n,
G = ∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 12 ⋯ ∂ y ∂ x 1 n ∂ y ∂ x 21 ∂ y ∂ x 22 ⋯ ∂ y ∂ x 2 n ⋮ ⋮ ⋱ ⋮ ∂ y ∂ x m 1 ∂ y ∂ x m 2 ⋯ ∂ y ∂ x m n ] = [ ∂ y ∂ x i j ] G = \frac{\partial y}{\partial X} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1n}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2n}} \\ \vdots & \vdots & \ddots & \vdots& \\ \frac{\partial y}{\partial x_{m1}} & \frac{\partial y}{\partial x_{m2}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{bmatrix} = \Big[\frac{\partial y}{\partial x_{ij}} \Big] G=Xy= x11yx21yxm1yx12yx22yxm2yx1nyx2nyxmny =[xijy]

2.关于autograd的说明

torch.Tensor 是包的核心类。如果将其属性 tensor.requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后,您可以调用 tensor.backward() 来自动计算所有梯度。该张量的梯度将累积到 tensor.grad 属性中。

要停止 tensor 历史记录的跟踪,您可以调用 tensor.detach(),它将其与计算历史记录分离,并防止将来的计算被跟踪。

要停止跟踪历史记录(和使用内存),您还可以将代码块使用 with torch.no_grad(): 包装起来。在评估模型时,这是特别有用,因为模型在训练阶段具有 requires_grad = True 的可训练参数有利于调参,但在评估阶段我们不需要梯度。

还有一个类对于 autograd 实现非常重要那就是 FunctionTensorFunction 互相连接并构建一个非循环图,它保存整个完整的计算过程的历史信息。每个张量都有一个 tensor.grad_fn 属性保存着创建了张量的 Function 的引用,(如果用户自己创建张量,则 grad_fn=None)。

如果你想计算导数,你可以调用 tensor.backward()如果 Tensor 是标量(即它包含一个元素数据),则不需要指定任何参数backward(),但是如果它有更多元素,则需要指定一个gradient 参数来指定张量的形状。

最后的计算结果保存在tensor.grad属性里

  • 使用tensor.requires_grad在初始化时,设置跟踪梯度
import torch
import numpy as np
x = torch.ones(2,2, requires_grad=True)
print(x)

结果如下

tensor([[1., 1.],[1., 1.]], requires_grad=True)
  • 设置了跟踪梯度的tensor,将会出现tensor.grad_fn的属性,用于记录上次计算的Function
y = torch.add(x, 1)
print(y)
print(y.grad_fn)

结果如下

tensor([[2., 2.],[2., 2.]], grad_fn=<AddBackward0>)
<AddBackward0 object at 0x0000020D723EBE80>
  • tensor.requires_grad_(True / False) 会改变张量的 requires_grad 标记。 如果没有提供相应的参数输入的标记默认为 False。
a = torch.randn(2,2)
a = (a * 3) / (a-1)
print(a)
a.requires_grad_(True)
print(a)
a = a + 1
print(a)
tensor([[  0.0646, -46.3478],[  5.6683,  -0.8896]])
tensor([[  0.0646, -46.3478],[  5.6683,  -0.8896]], requires_grad=True)
tensor([[  1.0646, -45.3478],[  6.6683,   0.1104]], grad_fn=<AddBackward0>)

3. grad的计算

3.1 Manual手动计算

  • 可以使用函数torch.autograd.grad()来手动计算梯度,详细可参考此处
Image

例如计算 y = x 1 2 + x 2 2 + x 1 x 2 y = x_1^2 + x_2^2 + x_1x_2 y=x12+x22+x1x2的梯度

x1 = torch.tensor(3., requires_grad=True)
x2 = torch.tensor(1., requires_grad=True)
y = x1**2+x2**2+x1*x2# 求一阶导数
# torch.autograd.grad(y, x1,retain_graph=True, create_graph=True)
x1_1 = torch.autograd.grad(y, x1, retain_graph=True, create_graph=True)[0]
x2_1 = torch.autograd.grad(y, x2, retain_graph=True, create_graph=True)[0]
print(x1_1,x2_1)# 求二阶混合偏导数
x1_11 = torch.autograd.grad(x1_1, x1)[0]
x1_12 = torch.autograd.grad(x1_1, x2)[0]
x2_21 = torch.autograd.grad(x2_1, x1)[0]
x2_22 = torch.autograd.grad(x2_1, x2)[0]
print(x1_11,x1_12,x2_21,x2_22)

结果如下

tensor(7., grad_fn=<AddBackward0>) tensor(5., grad_fn=<AddBackward0>)
tensor(2.) tensor(1.) tensor(1.) tensor(2.)

3.2 backward()自动计算

当输出是标量scalar函数时
考虑如下的计算问题

x = torch.ones(2,2, requires_grad=True)
y = x + 2
print(y)
z = y * y * 3
out = z.mean()
print(z, out)  #输出out是一个标量
out.backward()
print(x.grad)

输出是

tensor([[3., 3.],[3., 3.]], grad_fn=<AddBackward0>)
tensor([[27., 27.],[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)
tensor([[4.5000, 4.5000],[4.5000, 4.5000]])

X = [ x 1 x 2 x 3 x 4 ] = [ 1 1 1 1 ] X =\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} X=[x1x3x2x4]=[1111]

中间变量是

Z = [ z 1 z 2 z 3 z 4 ] = [ 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 ] Z =\begin{bmatrix} z_1 & z_2 \\ z_3 & z_4 \end{bmatrix} = \begin{bmatrix} 3(x_1+2)^2 & 3(x_1+2)^2 \\ 3(x_1+2)^2 & 3(x_1+2)^2 \end{bmatrix} Z=[z1z3z2z4]=[3(x1+2)23(x1+2)23(x1+2)23(x1+2)2]

最后获得是输出是

out = 1 4 ∑ i = 1 z i = 1 4 ( z 1 + z 2 + z 3 + z 4 ) = 1 4 ( 3 ( x 1 + 2 ) 2 + 3 ( x 2 + 2 ) 2 + 3 ( x 3 + 2 ) 2 + 3 ( x 4 + 2 ) 2 ) = f ( x ) \begin{aligned} \text{out} & = \frac{1}{4}\sum_{i=1} z_i = \frac{1}{4}(z_1+z_2+z_3+z_4) \\ & = \frac{1}{4}(3(x_1+2)^2+3(x_2+2)^2+3(x_3+2)^2+3(x_4+2)^2) \\ & = f(\mathrm{x}) \end{aligned} out=41i=1zi=41(z1+z2+z3+z4)=41(3(x1+2)2+3(x2+2)2+3(x3+2)2+3(x4+2)2)=f(x)

其中将矩阵 X X X和矩阵 Z Z Z中的所有元素拼接为向量

x = [ x 1 , x 2 , x 3 , x 4 ] T z = [ z 1 , z 2 , z 3 , z 4 ] T \mathrm{x} = [x_1,x_2,x_3,x_4]^T \\ \mathrm{z} = [z_1,z_2,z_3,z_4]^T x=[x1,x2,x3,x4]Tz=[z1,z2,z3,z4]T

我们利用矩阵求导的链式法则

∂ f ∂ x = f ( x ) ∂ x = ∂ z ∂ x ∂ f ( x ) ∂ z \frac{\partial f}{\partial \mathrm{x}} = \frac{f(\mathrm{x})}{\partial \mathrm{x}} = \frac{\partial \mathrm{z}}{\partial \mathrm{x}} \frac{\partial f(\mathrm{x})}{\partial \mathrm{z}} xf=xf(x)=xzzf(x)

再利用标量函数对矩阵导数的定义,则有

∂ f ∂ x = [ ∂ z 1 ∂ x 1 ∂ z 2 ∂ x 1 ∂ z 3 ∂ x 1 ∂ z 4 ∂ x 1 ∂ z 1 ∂ x 2 ∂ z 2 ∂ x 2 ∂ z 3 ∂ x 2 ∂ z 4 ∂ x 2 ∂ z 1 ∂ x 3 ∂ z 2 ∂ x 3 ∂ z 3 ∂ x 3 ∂ z 4 ∂ x 3 ∂ z 1 ∂ x 4 ∂ z 2 ∂ x 4 ∂ z 3 ∂ x 4 ∂ z 4 ∂ x 4 ] [ ∂ f ∂ z 1 ∂ f ∂ z 2 ∂ f ∂ z 3 ∂ f ∂ z 4 ] = [ 6 ( x 1 + 2 ) 0 0 0 0 6 ( x 2 + 2 ) 0 0 0 0 6 ( x 3 + 2 ) 0 0 0 0 6 ( x 4 + 2 ) ] [ 1 4 1 4 1 4 1 4 ] = [ 4.5 4.5 4.5 4.5 ] \frac{\partial f}{\partial \mathrm{x}} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_2}{\partial x_1} & \frac{\partial z_3}{\partial x_1} & \frac{\partial z_4}{\partial x_1} \\ \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} & \frac{\partial z_3}{\partial x_2} & \frac{\partial z_4}{\partial x_2} \\ \frac{\partial z_1}{\partial x_3} & \frac{\partial z_2}{\partial x_3} & \frac{\partial z_3}{\partial x_3} & \frac{\partial z_4}{\partial x_3} \\ \frac{\partial z_1}{\partial x_4} & \frac{\partial z_2}{\partial x_4} & \frac{\partial z_3}{\partial x_4} & \frac{\partial z_4}{\partial x_4} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial z_1} \\ \frac{\partial f}{\partial z_2} \\ \frac{\partial f}{\partial z_3} \\ \frac{\partial f}{\partial z_4} \end{bmatrix}= \begin{bmatrix} 6(x_1+2) & 0 & 0 & 0 \\ 0 & 6(x_2+2) & 0 & 0 \\ 0 & 0 & 6(x_3+2) & 0 \\ 0 & 0 & 0 & 6(x_4+2) \end{bmatrix} \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ \end{bmatrix} xf= x1z1x2z1x3z1x4z1x1z2x2z2x3z2x4z2x1z3x2z3x3z3x4z3x1z4x2z4x3z4x4z4 z1fz2fz3fz4f = 6(x1+2)00006(x2+2)00006(x3+2)00006(x4+2) 41414141 = 4.54.54.54.5

所以最后获得关于的矩阵 X X X的导数为

∂ f ∂ X = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 ∂ f ∂ x 4 ] = [ 4.5 4.5 4.5 4.5 ] \frac{\partial f}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} & \frac{\partial f}{\partial x_4} \end{bmatrix} = \begin{bmatrix} 4.5 & 4.5 \\ 4.5 & 4.5 \\ \end{bmatrix} Xf=[x1fx3fx2fx4f]=[4.54.54.54.5]

当输出是张量tensor函数时

x = torch.tensor([[1.0, 2, 3],[4, 5, 6],[7, 8, 9]], requires_grad=True)
w = torch.tensor([[1.0, 2, 3],[4, 5, 6]], requires_grad=True)y = torch.matmul(x,w.T)
print(y)
print(torch.ones_like(y))
y.backward(gradient = torch.ones_like(y))
print(x.grad)

输出是

tensor([[ 14.,  32.],[ 32.,  77.],[ 50., 122.]], grad_fn=<MmBackward0>)
tensor([[1., 1.],[1., 1.],[1., 1.]])
tensor([[5., 7., 9.],[5., 7., 9.],[5., 7., 9.]])

Y = X W T [ y 11 y 21 y 12 y 22 y 13 y 23 ] = [ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ] [ w 11 w 21 w 12 w 22 w 13 w 23 ] [ y 11 y 21 y 12 y 22 y 13 y 23 ] = [ ( x 11 w 11 + x 12 w 12 + x 13 w 13 ) ( x 11 w 21 + x 12 w 22 + x 13 w 23 ) ( x 21 w 11 + x 22 w 12 + x 23 w 13 ) ( x 21 w 21 + x 22 w 22 + x 23 w 23 ) ( x 31 w 11 + x 32 w 12 + x 33 w 13 ) ( x 31 w 21 + x 32 w 22 + x 33 w 23 ) ] Y = XW^T \\ \begin{bmatrix} y_{11} & y_{21} \\ y_{12} & y_{22} \\ y_{13} & y_{23} \\ \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ \end{bmatrix} \begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \\ \end{bmatrix} \\ \begin{bmatrix} y_{11} & y_{21} \\ y_{12} & y_{22} \\ y_{13} & y_{23} \\ \end{bmatrix} = \begin{bmatrix} (x_{11}w_{11} + x_{12}w_{12} + x_{13}w_{13}) & (x_{11}w_{21} + x_{12}w_{22} + x_{13}w_{23}) \\ (x_{21}w_{11} + x_{22}w_{12} + x_{23}w_{13}) & (x_{21}w_{21} + x_{22}w_{22} + x_{23}w_{23}) \\ (x_{31}w_{11} + x_{32}w_{12} + x_{33}w_{13}) & (x_{31}w_{21} + x_{32}w_{22} + x_{33}w_{23}) \\ \end{bmatrix} Y=XWT y11y12y13y21y22y23 = x11x21x31x12x22x32x13x23x33 w11w12w13w21w22w23 y11y12y13y21y22y23 = (x11w11+x12w12+x13w13)(x21w11+x22w12+x23w13)(x31w11+x32w12+x33w13)(x11w21+x12w22+x13w23)(x21w21+x22w22+x23w23)(x31w21+x32w22+x33w23)

gradient=torch.ones_like(y)用于指定矩阵 Y Y Y中每一项的权重都为1,由矩阵 Y Y Y中元素加权得到的scalar函数为

f ( x , w ) = 1 × y 11 + 1 × y 12 + 1 × y 13 + 1 × y 21 + 1 × y 22 + 1 × y 23 , x = [ x 11 , x 12 , x 13 , x 21 , x 22 , x 23 , x 31 , x 32 , x 33 ] T w = [ w 11 , w 12 , w 13 , w 21 , w 22 , w 23 , w 31 , w 32 , w 33 ] T \begin{aligned} f(\mathrm{x},\mathrm{w}) & = 1\times y_{11}+1\times y_{12}+1\times y_{13}+1\times y_{21}+1\times y_{22}+1\times y_{23}, \\ & \mathrm{x} = [x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}]^T \\ & \mathrm{w} = [w_{11}, w_{12}, w_{13}, w_{21}, w_{22}, w_{23}, w_{31}, w_{32}, w_{33}]^T \end{aligned} f(x,w)=1×y11+1×y12+1×y13+1×y21+1×y22+1×y23,x=[x11,x12,x13,x21,x22,x23,x31,x32,x33]Tw=[w11,w12,w13,w21,w22,w23,w31,w32,w33]T

这里不包括复合求导,可以直接计算

∂ f ∂ x = [ ∂ f ∂ x 11 , ∂ f ∂ x 12 , ∂ f ∂ x 13 , ∂ f ∂ x 21 , ∂ f ∂ x 22 , ∂ f ∂ x 23 , ∂ f ∂ x 31 , ∂ f ∂ x 32 , ∂ f ∂ x 33 ] T ∂ f ∂ x = [ w 11 + w 21 , w 12 + w 22 , w 13 + w 23 , w 11 + w 21 , w 12 + w 22 , w 13 + w 23 , w 11 + w 21 , w 12 + w 22 , w 13 + w 23 ] T = [ 5 , 7 , 9 , 5 , 7 , 9 , 5 , 7 , 9 ] T \begin{aligned} \frac{\partial f}{\partial \mathrm{x}} & = \Big[\frac{\partial f}{\partial x_{11}}, \frac{\partial f}{\partial x_{12}}, \frac{\partial f}{\partial x_{13}}, \frac{\partial f}{\partial x_{21}}, \frac{\partial f}{\partial x_{22}}, \frac{\partial f}{\partial x_{23}}, \frac{\partial f}{\partial x_{31}}, \frac{\partial f}{\partial x_{32}}, \frac{\partial f}{\partial x_{33}} \Big]^T \\ \frac{\partial f}{\partial \mathrm{x}} & = \Big[ w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23}, w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23}, w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23} \Big]^T \\ & = [5, 7, 9, 5, 7, 9, 5, 7, 9]^T \end{aligned} xfxf=[x11f,x12f,x13f,x21f,x22f,x23f,x31f,x32f,x33f]T=[w11+w21,w12+w22,w13+w23,w11+w21,w12+w22,w13+w23,w11+w21,w12+w22,w13+w23]T=[5,7,9,5,7,9,5,7,9]T
再写成矩阵的形式则有

∂ f ∂ X = [ 5 7 9 5 7 9 5 7 9 ] \frac{\partial f}{\partial X} = \begin{bmatrix} 5 & 7 & 9 \\ 5 & 7 & 9 \\ 5 & 7 & 9 \\ \end{bmatrix} Xf= 555777999

再考虑一个更一般求二阶导的情况

x = torch.ones(3, requires_grad=True)
print(x)
y = x * 2
print(y)
z = y * 2
print(z)
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
z.backward(gradient=v)
print(x.grad)

结果如下

tensor([1., 1., 1.], requires_grad=True)
tensor([2., 2., 2.], grad_fn=<MulBackward0>)
tensor([4., 4., 4.], grad_fn=<MulBackward0>)
tensor([4.0000e-01, 4.0000e+00, 4.0000e-04])

其中
x = [ x 1 , x 2 , x 3 ] T = [ 1 , 1 , 1 ] T y = 2 x = [ y 1 , y 2 , y 3 ] T = [ 2 , 2 , 2 ] T z = 2 y = [ z 1 , z 2 , z 3 ] T = [ 4 , 4 , 4 ] T \begin{aligned} \mathrm{x} & = [x_1,x_2,x_3]^T = [1,1,1]^T \\ \mathrm{y} = 2\mathrm{x} & = [y_1,y_2,y_3]^T = [2,2,2]^T \\ \mathrm{z} = 2\mathrm{y} & = [z_1,z_2,z_3]^T = [4,4,4]^T \end{aligned} xy=2xz=2y=[x1,x2,x3]T=[1,1,1]T=[y1,y2,y3]T=[2,2,2]T=[z1,z2,z3]T=[4,4,4]T
若考虑gradient=torch.tensor([a1,a2,a3], dtype=torch.folat),那么最终加权得到的scalar函数为
f = a 1 z 1 + a 2 z 2 + a 3 z 3 f = a_1 z_1 + a_2 z_2 + a_3 z_3 f=a1z1+a2z2+a3z3
那么对 x \mathrm{x} x求偏导则有
∂ f ∂ x = ∂ y ∂ x ∂ f ∂ y = [ ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 1 ∂ y 3 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 2 ∂ x 2 ∂ y 3 ∂ x 2 ∂ y 1 ∂ x 3 ∂ y 2 ∂ x 3 ∂ y 3 ∂ x 3 ] [ ∂ f ∂ y 1 ∂ f ∂ y 2 ∂ f ∂ y 3 ] = [ 2 2 2 ] [ 2 a 1 2 a 2 2 a 3 ] = [ 4 a 1 , 4 a 2 , 4 a 3 ] T \begin{aligned} \frac{\partial f}{\partial \mathrm{x}} & = \frac{\partial \mathrm{y}}{\partial \mathrm{x}} \frac{\partial f}{\partial \mathrm{y}} \\ & = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_3}{\partial x_2} \\ \frac{\partial y_1}{\partial x_3} & \frac{\partial y_2}{\partial x_3} & \frac{\partial y_3}{\partial x_3} \\ \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial y_1} \\ \frac{\partial f}{\partial y_2} \\ \frac{\partial f}{\partial y_3} \\ \end{bmatrix} \\ & = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix} \begin{bmatrix} 2 a_1 \\ 2 a_2 \\ 2 a_3 \\ \end{bmatrix} \\ & = [4a_1, 4a_2, 4a_3]^T \end{aligned} xf=xyyf= x1y1x2y1x3y1x1y2x2y2x3y2x1y3x2y3x3y3 y1fy2fy3f = 222 2a12a22a3 =[4a1,4a2,4a3]T

一些启示

Image

Reference

参考教程1
参考教程2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_340058.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

极光笔记 | 浅谈企业级SaaS产品的客户成长旅程管理(上)—— 分析篇

本文作者&#xff1a;陈伟&#xff08;极光用户体验部高级总监&#xff09; “企业级SaaS产品与C端互联网产品特征差异很大&#xff0c;有些甚至是截然相反&#xff0c;这些特征也会成为后续客户成长旅程的重要影响变量。本文就如何设计并服务好企业级SaaS产品客户成长旅程进行…

全网最强,Python接口自动化测试实战-接口参数关联(购物实例)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 什么是参数关联&a…

Spring之浅谈AOP技术

目录 前言 1.AOP的作用 2.AOP核心 Spring实现AOP 3.AOP工作流程 4.AOP核心概念 5.AOP通知类型 5.1类型介绍 5.2通知类型的使用 前置通知 后置通知 ​​​​​​​环绕通知 前言 AOP&#xff1a;Aspect Oriented Programming&#xff08;面向切面编程&#xff09;&…

收藏!9款好用的前端可视化工具推荐

“可视化开发”是上个世纪90年代软件界最大的热点之一。 当初&#xff0c;可视化开发主要专注于用户界面的构建&#xff0c;让开发者通过简单的拖拽操作&#xff0c;快速搭建用户界面&#xff0c;一些成熟产品更是实现了“所见即所得”。在与当时最先进的高级编程语言相比较时&…

01-序言

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan 简介&#xff1a; 此专栏是学习“线性代数”课程做的笔记&#xff0c;教程来自B站的3Blue1Brown​​​​​​​d​​​​​​​。 视频作者是Grant Sanderson&#xff0c; 他本人是斯坦…

Redis两种持久化方案RDB持久化和AOF持久化

Redis持久化 Redis有两种持久化方案&#xff1a; RDB持久化AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file&#xff08;Redis数据备份文件&#xff09;&#xff0c;也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启…

【ASP.NET MVC】使用动软(三)(11)

一、问题 上文中提到&#xff0c;动软提供了数据库的基本操作功能&#xff0c;但是往往需要添加新的功能来解决实际问题&#xff0c;比如GetModel&#xff0c;通过id去查对象&#xff1a; 这个功能就需要进行改进&#xff1a;往往程序中获取的是实体的其他属性&#xff0c;比如…

Vue2 第十八节 插槽

1.默认插槽 2.具名插槽 3.作用域插槽 插槽 ① 作用&#xff1a;让父组件可以向子组件指定位置插入html结构&#xff0c;也是一种组件间通信的方式&#xff0c;适用于父组件和子组件间通信 ② 分类&#xff1a;默认插槽&#xff0c;具名插槽&#xff0c;作用域插槽 一.默认…

【Linux】创建与删除用户

新增用户&#xff1a; adduser 用户名【添加用户】 passwd 用户名【设置用户密码】删除用户&#xff1a; userdel -r 用户名【删除用户】

【机器学习】在 MLOps构建项目 ( MLOps2)

My MLOps tutorials: Tutorial 1: A Beginner-Friendly Introduction to MLOps教程 2&#xff1a;使用 MLOps 构建机器学习项目 一、说明 如果你希望将机器学习项目提升到一个新的水平&#xff0c;MLOps 是该过程的重要组成部分。在本文中&#xff0c;我们将以经典手写数字分类…

【力扣】206. 反转链表 <链表指针>

【力扣】206. 反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1] 示例 3 输入&#xff1a…

Qt中ffmpeg API存储和显示摄像头视频

Qt中ffmpeg API存储和显示摄像头视频的功能需要之前写的视频ffmpegAPI的视频播放的流程。 代码源码位置&#xff1a;https://download.csdn.net/download/qq_43812868/88157743?spm1001.2014.3001.5503 一、存储和显示摄像头的视频的流程 这是读取打开视频文件的流程&#x…

8.4作业

用信号量的方式实现打印1234567后打印7654321循环交替打印。 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<head.h> char buf[]"1234567"; sem_t sem; void *callBack1(void *arg) {int i0;int sstrlen(buf)-1;while…

LeetCode 27题:移除元素

题目 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长…

FreeIPA Server/Client不同版本组合,对podman rootless container的支持

FreeIPA Server/Client不同版本组合&#xff0c;对podman rootless container的支持 根据实验&#xff0c; CentOS 7.9 yum仓库自带的FreeIPA Server 4.6.8&#xff0c; ipa client版本支持CentOS 7.9 yum仓库自带的FreeIPA Client 4.6.8不支持subids&#xff0c;podman调用…

NVIDIA 535.86.05 Linux 图形驱动程序改进 Wayland 支持

NVIDIA公司近日发布了适用于 Linux、FreeBSD 和 Solaris 系统的 NVIDIA 535.86.05 图形驱动程序&#xff0c;作为其生产分支的维护更新&#xff0c;解决了各种错误和问题。 NVIDIA 535.86.05 是在 NVIDIA 535.54.03 发布一个多月之后发布的&#xff0c;它通过解决在使用某些 W…

G-channel 实现低光图像增强

G-channel 之前研究低光图像增强时&#xff0c;看到一篇博客&#xff0c;里面介绍了一种方法&#xff0c;没有说明出处&#xff0c;也没有说明方法的名字&#xff0c;这里暂时叫做 G-channel 算法。 博客地址&#xff1a;低照度图像增强&#xff08;附步骤及源码&#xff09;…

Java使用POI读取Excel名称管理器

文章目的 本文主要介绍如何使用poi读取到Excel的名称管理器中的内容。并且定位到单元格。 在企业的开发中可能需要通过名称管理器定位到某个单元格&#xff0c;然后在单元格上生成签名。 环境配置 Java&#xff1a;Jdk1.8 poi&#xff1a;5.2.3 maven依赖(pom.xml)&#x…

C++类和对象入门(下)

C类和对象入门 1. Static成员1.1 Static成员的概念2.2 Static成员的特性 2.友元2.1 友元函数2.2 友元函数的特性2.3 友元类 3. 内部类3.1 内部类的概念和特性 4. 匿名对象5. 再次理解类和对象 1. Static成员 1.1 Static成员的概念 声明为static的类成员称为类的静态成员&…

ARCGIS地理配准出现的问题

第一种。已有省级行政区矢量数据&#xff0c;在网上随便找一个相同省级行政区图片&#xff0c;利用地理配准工具给图片添加坐标信息。 依次添加省级行政区选择矢量数据、浙江省图片。 此时&#xff0c;图层默认的坐标系与第一个加载进来的省级行政区选择矢量数据的坐标系一致…