【Linux】Redis 集群部署

news/2024/4/29 22:18:03/文章来源:https://blog.csdn.net/h15162064289/article/details/131514206

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

Redis 集群部署

  • Redis 主从复制
    • 主从复制的作用
    • 主从复制的流程
    • 搭建Redis 主从复制
      • 安装 Redis
      • 修改 Redis 配置文件(Master节点操作)
      • 修改 Redis 配置文件(Slave节点操作)
      • 验证主从效果
  • Redis 哨兵模式
    • 哨兵模式的作用
    • 故障转移机制
    • 主节点的选举
    • 搭建Redis 哨兵模式
      • 修改 Redis 哨兵模式的配置文件(所有节点操作)
      • 启动哨兵模式
      • 查看哨兵信息
      • 故障模拟
  • Redis 群集模式
    • 集群的作用
    • Redis集群的数据分片
    • Redis集群的主从复制模型
    • 搭建Redis 群集模式
      • 开启群集功能
      • 启动redis节点
      • 启动集群
      • 测试群集


●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

Redis 主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用

●数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从复制的流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

搭建Redis 主从复制

Master节点:192.168.142.60
Slave1节点:192.168.142.61
Slave2节点:192.168.142.62

安装 Redis

#环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p#安装redis
yum install -y gcc gcc-c++ maketar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行source /etc/profile#定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target

修改 Redis 配置文件(Master节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOFsystemctl restart redis-server.service

修改 Redis 配置文件(Slave节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.142.60 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepasssystemctl restart redis-server.service

验证主从效果

在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.142.70:6379 asks for synchronization
Replica 192.168.142.80:6379 asks for synchronization
Synchronization with replica 192.168.142.70:6379 succeeded
Synchronization with replica 192.168.142.80:6379 succeeded

在这里插入图片描述

在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.142.80,port=6379,state=online,offset=448,lag=1
slave1:ip=192.168.142.70,port=6379,state=online,offset=448,lag=0

在这里插入图片描述

Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式的作用

●监控: 哨兵会不断地检查主节点和从节点是否运作正常。
●自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
●通知(提醒): 哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

搭建Redis 哨兵模式

Master节点:192.168.142.60
Slave1节点:192.168.142.70
Slave2节点:192.168.142.80systemctl stop firewalld
setenforce 0

修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.confvim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.142.60 6379 2		#73行,修改 指定该哨兵节点监控192.168.142.60:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

查看哨兵信息

redis-cli -p 26379 info Sentinel# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_tilt_since_seconds:-1
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.142.60:6379,slaves=2,sentinels=3

在这里插入图片描述

故障模拟

ps -ef | grep redisredis     10256      1  0 14:37 ?        00:00:01 /usr/local/redis/bin/redis-server 0.
root      10462      1  0 14:56 ?        00:00:00 redis-sentinel *:26379 [sentinel]
root      10552   4101  0 15:02 pts/1    00:00:00 grep --color=auto redis

在这里插入图片描述

#杀死 Master 节点上redis-server的进程号
kill -9 10256			#Master节点上redis-server的进程号#验证结果
1.tail -f /usr/local/redis/log/sentinel.log

在这里插入图片描述

2.redis-cli -p 26379 INFO Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_tilt_since_seconds:-1
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.142.70:6379,slaves=2,sentinels=3

Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

集群的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例

节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

Redis集群的主从复制模型

集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

在这里插入图片描述

开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conffor d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
doneps -ef | grep redis

在这里插入图片描述

启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

在这里插入图片描述

测试群集

redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots           #查看节点的哈希槽编号范围
1) 1) (integer) 02) (integer) 5460                                 #哈希槽编号范围3) 1) "127.0.0.1"2) (integer) 6001                              #主节点IP和端口号3) "f9aa5786495260efd138eef5541977cda2530cd0"4) (empty array)4) 1) "127.0.0.1"2) (integer) 6006                              #从节点IP和端口号3) "b259c138c2b3bcbd6cf7054a111a692453190dc1"4) (empty array)
2) 1) (integer) 54612) (integer) 109223) 1) "127.0.0.1"2) (integer) 60023) "3c194f881796ed9046a5d492a85901290b24e21d"4) (empty array)4) 1) "127.0.0.1"2) (integer) 60043) "6309b8a68022a205c62ba86440cd0465ef032505"4) (empty array)
3) 1) (integer) 109232) (integer) 163833) 1) "127.0.0.1"2) (integer) 60033) "8b8500cfb908172ee4761d963e1f9a2205e19d5f"4) (empty array)4) 1) "127.0.0.1"2) (integer) 60053) "3b5b4ba90ecda2b2587cb953c467fc0f1d15bab2"4) (empty array)127.0.0.1:6001> set name ztm
-> Redirected to slot [5798] located at 127.0.0.1:6002
OK
127.0.0.1:6002> cluster keyslot name     #查看name键的槽编号
(integer) 5798
127.0.0.1:6002> redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"redis-cli -p 6001 -c cluster nodes

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_325622.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32——建工程

文章目录 一、建工程步骤1. 创建一个工程文件2. 里面创建四个文件3. Lib:存放标准库的.c和.h文件,其中inc放置.h文件,src放置.c文件4. Startup中存放驱动文件5.User文件中包含以下路径以下文件6.创建工程Project 一、建工程步骤 以STM32F10X…

百万连接实现01:使用epoll+多线程+多IP地址管理tcp客户端集群

操作系统采用 <客户端IP : 客户端端口> : <服务端IP : 服务端端口> 四元组来标识一条TCP连接。 所以要想实现百万连接&#xff1a; 第一种是服务器端只开启一个进程&#xff0c;然后使用很多个客户端进程绑定不同的客户端 ip 来连接&#xff0c;假设 20个ip * 5w&a…

AIGC - Easy Diffusion (Stable Diffusion) 图像生成工具的环境配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/131524075 版本v2.5.41 Stable Diffusion 图像生成工具是一种基于深度学习的技术&#xff0c;可以从随机噪声中生成高质量的图像&#x…

计模式篇(Java):桥接模式

上一篇&#xff1a;计模式篇(Java)&#xff1a;适配器模式 九、桥接模式 需求示例 当我们对不同手机类型的不同品牌实现操作编程&#xff0c;如图&#xff1a; 那么它对应的类图就是 传统方式解决需求分析&#xff1a; 扩展性问题&#xff0c;如果需要在增加手机的样式&#x…

自学网络安全究竟该从何学起?

一、为什么选择网络安全&#xff1f; 这几年随着我国《国家网络空间安全战略》《网络安全法》《网络安全等级保护2.0》等一系列政策/法规/标准的持续落地&#xff0c;网络安全行业地位、薪资随之水涨船高。 未来3-5年&#xff0c;是安全行业的黄金发展期&#xff0c;提前踏入行…

MATLAB | 拉普拉斯分布/拉普拉斯噪声的生成

一、实验目标 生成拉普拉斯分布的噪声&#xff0c;并分析它的概率密度函数 二、解决思路 &#xff08;1&#xff09;拉普拉斯分布可以由指数分布生成 拉普拉斯的概率密度函数为 f ( x ; μ , λ ) 1 2 λ e − ∣ x − μ ∣ λ f(x;\mu,\lambda)\frac{1}{2 \lambda} e^{…

简单的手机记事本怎么把英文翻译成中文?

手机记事本是人们常用的辅助工具之一&#xff0c;在使用手机记事本记录内容的时候&#xff0c;除了我们平时使用较多的中文之外&#xff0c;也有人会记录一些英文内容。想要将手机记事本中的英文内容翻译成中文内容应该如何操作呢&#xff1f;以iPhone手机端敬业签记事本软件为…

GIS杂记(二):Arcgis对采样点进行裁剪,获取指定区域内的采样点

有时候需要对栅格数据进行采样处理&#xff0c;如果采样点过多则会使得采样时间过长&#xff0c;今天在进行数据采样时&#xff0c;使用了1km*1km的渔网建立的采样点&#xff0c;大概有1百万个点&#xff0c;程序运行时间大概4个小时&#xff0c;但是其中有绝大部分数据都是空值…

Css 基础:选择器,三大特性

1.emmet的 快速格式化代码 配置 "editor.formatOnType": true, "editor.formatOnSave": true 2.基础选择器 3.复合选择器 4.单行文本垂直居中原理 5.css背景 6.CSS三大特性 层叠性&#xff1a;相同选择器设置相同样式&#xff0c;发生在样式冲突时&#xf…

【PC】CPU与GPU

文章目录 CPU与主板CPU是什么主板是什么功能 GPU与显卡GPU是什么显卡是什么功能 CPU与GPU的关系 ALU&#xff1a; 算术单元&#xff08;Arithmetic Unit&#xff09;&#xff1a;算术单元执行基本的算术运算&#xff0c;如加法、减法、乘法和除法。它能够对整数、浮点数和定点数…

Web服务器群集:LVS+Keepalived高可用群集

目录 一、理论 1.Keepalived 2.VRRP协议&#xff08;虚拟路由冗余协议&#xff09; 3.部署LVSKeepalived 高可用群集 二、实验 1.LVSKeepalived 高可用群集 三、问题 1.备服务器网卡启动报错 四、总结 一、理论 1.Keepalived &#xff08;1&#xff09;简介 Keepal…

Redis高可用群集---搭建(主从、哨兵、Cluster)

目录 Redis 高可用集群Redis 主从复制Redis 哨兵模式Redis 集群模式 Redis 高可用集群 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务&#xff08;99.9%、99.99%、99.999%等等&#xff09;。 但是在Redi…

MySQL原理探索——22 MySQL有哪些“饮鸩止渴”提高性能的方法

不知道你在实际运维过程中有没有碰到这样的情景&#xff1a;业务高峰期&#xff0c;生产环境的 MySQL 压力太大&#xff0c;没法正常响应&#xff0c;需要短期内、临时性地提升一些性能。 我做项目的时候&#xff0c;就偶尔会碰上这种场景。用户的开发负责人说&#xff0c;不管…

Spring中bean使用方法

Spring框架是一个非常重要的开发工具&#xff0c;它提供了丰富的功能和模块&#xff0c;其中核心的概念之一就是Spring Bean。Spring Bean是Spring IoC容器中的一个对象&#xff0c;它负责管理一个Java对象的生命周期以及依赖注入。下面我将通过互联网场景下的相关背景内容来阐…

4通道AD采集子卡模块有哪些推荐?

FMC134是一款4通道3.2GSPS&#xff08;2通道6.4GSPS&#xff09;采样率12位AD采集FMC子卡模块&#xff0c;该板卡为FMC标准&#xff0c;符合VITA57.4规范&#xff0c;可以作为一个理想的IO模块耦合至FPGA前端&#xff0c;16通道的JESD204B接口通过FMC连接器连接至FPGA的高速串行…

分布式系统监控zabbix安装部署及自定义监控

系列文章目录 文章目录 系列文章目录一、zabbix1.zabbix的基本概述2.zabbix 是一个基于 Web 界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。3.zabbix 监控原理4.Zabbix 6.0 功能组件5. zabbix的监控对象6.zabbix的常用术语7.zabbix进程详解8.zabbix的监控框…

安装配置云计算模板机

安装虚拟机模板机 一、在VMware上安装Centos虚拟机二、修改虚拟机的ip、网关、DNS三、更换yum源3.1 更换本地yum源3.2 更换国内互联网Yum源 四、 安装net-tools和bash-completion五、 关闭防火墙和SELinux 学习云计算后续需要多个虚拟机&#xff0c;作为云计算集群的节点&#…

【近场社交项目】数据库系统期末设计——需求分析部分

【近场社交项目】数据库系统设计——需求分析&#x1f60e; 前言&#x1f64c;1.需求求分析(用户部分为例&#xff09;1.2用户数据字典1.2.1用户信息表&#xff08;数据结构&#xff09;&#xff1a;数据项间的关系和结构定义&#xff1a; 1.2.2.个人资料表&#xff08;数据结构…

【React组件通讯的三种方式】

React组件通讯的三种方式 父组件传递数据给子组件子组件传递数据给父组件 React组件之间的通讯分为三种&#xff1a; 父组件 →子组件子组件 →父组件兄弟组件 父组件传递数据给子组件 步骤&#xff1a; 父组件提供要传递的state数据给子组件标签添加属性&#xff0c;值为st…

LeetCode·每日一题·445. 两数相加 II·模拟

作者&#xff1a;小迅 链接&#xff1a;https://leetcode.cn/problems/add-two-numbers-ii/solutions/2328613/mo-ni-zhu-shi-chao-ji-xiang-xi-by-xun-ge-67qx/ 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 著作权归作者所有。商业转载请联系作者获得授权&#xff…