【RabbitMQ高级篇】消息可靠性问题(1)

news/2024/5/4 10:42:14/文章来源:https://blog.csdn.net/weixin_45481821/article/details/129992131

目录

1.消息可靠性

1.1.生产者消息确认

1.1.1.修改配置

1.1.2.定义Return回调

1.1.3.定义ConfirmCallback

1.2.消息持久化

1.2.1.交换机持久化

1.2.2.队列持久化

1.2.3.消息持久化

1.3.消费者消息确认

1.3.1.演示none模式

1.3.2.演示auto模式

1.4.消费失败重试机制

1.4.1.本地重试

1.4.2.失败策略

1.5.总结

1.消息可靠性

消息从发送,到消费者接收,会经理多个过程:

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:

    • 生产者发送的消息未送达exchange

    • 消息到达exchange后未到达queue

  • MQ宕机,queue将消息丢失

  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制

  • mq持久化

  • 消费者确认机制

  • 失败重试机制

下面我们就通过案例来演示每一个步骤。

首先,导入课前资料提供的demo工程:

项目结构如下:

1.1.生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认

    • 消息成功投递到交换机,返回ack

    • 消息未投递到交换机,返回nack

  • publisher-return,发送者回执

    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

注意:

1.1.1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:rabbitmq:publisher-confirm-type: correlatedpublisher-returns: truetemplate:mandatory: true

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:

    • simple:同步等待confirm结果,直到超时

    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback

  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback

  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

1.1.2.定义Return回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

package cn.itcast.mq.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}

1.1.3.定义ConfirmCallback

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);
}

1.2.消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化

  • 队列持久化

  • 消息持久化

1.2.1.交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

1.2.2.队列持久化

RabbitMQ中队列默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

1.2.3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化

  • 2:持久化

用java代码指定:

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者

  • 2)消费者获取消息后,返回ACK给RabbitMQ

  • 3)RabbitMQ删除消息

  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

•manual:手动ack,需要在业务代码结束后,调用api发送ack。

•auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

•none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失

  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack

  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.3.1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2.演示auto模式

再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

怎么办呢?

1.4.1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了

  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试

  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

1.4.2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

1.5.总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列

  • 开启持久化功能,确保消息未消费前在队列中不会丢失

  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack

  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_282505.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.net C#反编译及脱壳常用工具--小结

1、Reflector --微软自家工具--推荐 Reflector是最为流行的.Net反编译工具。Reflector是由微软员工Lutz Roeder编写的免费程序。Reflector的出现使NET程序员眼前豁然开朗,因为这个免费工具可以将NET程序集中的中间语言反编译成C#或者Visual Basic代码。除了能将IL转…

五、页面切割技术,实现工作台

页面切割技术 1.<frameset>和<frame> <frameset>:用来切割页面 <frameset cols"20%,60%,20%"> 竖着把窗口切三部分 <frameset rows"20%,60%,20%"> 横着把窗口切三部分 <frame>&#xff1a;用来显示页面 <frame …

三星公司因ChatGPT造成数据泄露?

作者丨黑蛋 ChatGPT大家最近应该都听过很多&#xff0c;关于各种ChatGPT消息铺天盖地&#xff0c;将会取代大部分人工&#xff0c;ChatGPT代替创作&#xff0c;绘画&#xff0c;很多公司因此裁员等消息多不胜数&#xff0c;甚至短短几个月&#xff0c;ChatGPT升级版ChatGPT4就…

无需服务器免费上线你的静态网页

无需服务器免费上线你的静态网页:https://s.qiniu.com/bmaYJf

Keil 5 安装教程及简单使用【嵌入式系统】

Keil 5 安装教程【嵌入式系统】前言推荐说明keil5安装教程第一阶段&#xff1a;安装mdk第二阶段&#xff1a;激活mdk第三阶段&#xff1a;安装STM32芯片包第四阶段&#xff1a;安装C51单片机第五阶段&#xff1a;激活C51单片机keil 5的简单使用1建立新工程2创建新文件3.生成HEX…

华硕 ASUS-PRIME-B560M-A Intel Core i5-11400黑苹果efi引导文件

原文来源于黑果魏叔官网&#xff0c;转载需注明出处。&#xff08;下载请直接百度黑果魏叔&#xff09; 硬件型号驱动情况 主板ASUS-PRIME-B560M-A 处理器Intel Core i5-11400已驱动 内存16GB DDR4 3200 Mhz已驱动 硬盘Western Digital Black SN750 500GB已驱动 显卡SAPPH…

社区团购是什么?打破传统消费模式的新选择

社区团购作为一种新兴的消费模式&#xff0c;已经成为了越来越多人的选择。在社区团购中&#xff0c;商家可以通过团购的方式向消费者提供优惠的价格和服务&#xff0c;同时也可以借助社区团购来扩大销售渠道和提高品牌知名度。本文将以一家小型便利店的社区团购为例&#xff0…

艾瑞巴蒂看过来!OSSChat 上线:融合 CVP,试用通道已开放

还在纠结于反复查找开源项目的技术文档&#xff1f; 团队常因频繁搜索开源项目主页导致效率低下&#xff1f; 每天都要问一遍【开源项目中那些“小白问题”究竟有没有更快的解决方法&#xff1f;】 对此&#xff0c;只想对你说&#xff1a;赶紧试试 OSSChat&#xff01;赶紧试…

灵动MM32 MindSPIN系列MCU —— 无刷电机驱动的得力伙伴

无论是在工业应用&#xff0c;还是智能家居和物联网应用上&#xff0c;提高效率和节能减碳一直为其主轴诉求&#xff0c;而有着兼顾于高效与节能特色的直流无刷电机&#xff0c;正是符合此应用的主流。 灵动微电子MindSPIN系列MCU产品就是针对直流无刷电机驱动所量身打造的。由…

Leetcode.112 路径总和

题目链接 Leetcode.112 路径总和 easy 题目描述 给你二叉树的根节点 root和一个表示目标和的整数 targetSum。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum。如果存在&#xff0c;返回 true&#xff1b;否则&#xf…

自学编程的5大误区,早知道早避坑,过来人的宝贵经验

前言 有的人自学很快&#xff0c;几乎一个多月就能掌握一门技术&#xff0c;而有的人苦苦坚持&#xff0c;最后还是半途而废&#xff0c;很大的原因就在于在学习的时候掉进了一些误区没能走出来。 今天我们就来讲讲自学编程常见的5大误区&#xff0c;避开这些误区我们定能在自…

美团全国各配送站机房配备深圳钡铼技术工业物联网监测终端S270,实现远程数据监测

美团集团与钡铼技术&#xff0c;日前签约美团旗下全国各配送站机房监测项目。深圳钡铼技术为美团每家配送站机房配备工业物联网数据监测终端S270&#xff0c;接入美团系统&#xff0c;助力美团集团实现物联网升级。实现远程采集仓库机房水浸、温湿度、烟感、停电报警等数据&…

“成年人”的数据库,既要又要也要!

欢迎访问 OceanBase 官网获取更多信息&#xff1a;https://www.oceanbase.com/ 3 月 25 日&#xff0c;第一届 OceanBase 开发者大会在北京举行&#xff0c;《明说三人行》访谈栏目创始人兼主持人卢东明、沃趣科技创始人兼 CEO 陈栋、DBAplus 社群联合创始人杨建荣、PostgreSQL…

强化学习——初探强化学习

本文引自&#xff1a;《 动手学强化学习 》 第 1 章 初探强化学习 1.1 简介 亲爱的读者&#xff0c;欢迎来到强化学习的世界。初探强化学习&#xff0c;你是否充满了好奇和期待呢&#xff1f;我们想说&#xff0c;首先感谢你的选择&#xff0c;学习本书不仅能够帮助你理解强…

MATLAB插值函数interp1

MATLAB插值函数interp1 参考链接&#xff1a;interp1 插值法又称“内插法”&#xff0c;是利用函数f (x)在某区间中已知的若干点的函数值&#xff0c;作出适当的特定函数&#xff0c;在区间的其他点上用这特定函数的值作为函数f (x)的近似值&#xff0c;这种方法称为插值法。…

【C语言】浮点数和0比较

文章目录一. 浮点数存储时是有精度损失的二. 浮点数不能直接进行 比较三. 使用精度来比较两个浮点数是否相等四. 浮点数和0比较一. 浮点数存储时是有精度损失的 下面程序中我们打印一个浮点数的值 int main() {double d 3.6;printf("%.50f\n", d);return 0; }观察…

已解决IndexError: arrays used as indices must be of integer (or boolean) type

已解决IndexError: arrays used as indices must be of integer (or boolean) type 文章目录报错问题解决方法PS报错问题 之前在工作中遇到过这个坑&#xff0c;记录一下问题以及解决方法&#xff0c;不一定针对所有情况都能用&#xff0c;但是可以供大家参考。 问题描述如下&…

前端正确处理“文字溢出”的思路

前言&#xff1a; 最近在项目中需要做到类似于 Mac 下这种&#xff0c;当屏幕宽度足以容下当前文件名称的时候&#xff0c;文件名称全部展示&#xff0c;不做省略。 然而当用户缩放浏览器显示的尺寸时&#xff0c;我们需要做到省略中间的文字&#xff0c;选择保留后缀这种方案…

shared_preload_libraries

shared_preload_libraries 扩展模块 shared_preload_libraries 是 PostgreSQL 中的配置参数&#xff0c;用于指定在数据库服务器启动过程中应加载到内存中的共享库列表。 这些共享库可以包含数据库服务器的附加特性和功能&#xff0c;这些特性和功能在核心 PostgreSQL 代码中…

STM-32:DMA直接存储器存取—DMA转运数据/22DMA+AD多通道

目录一、DMA直接存储器存取二、存储器映像三、DMA的框图四、DMA基本结构五、DMA请求&#xff08;触发源&#xff09;六、数据宽度与对齐七、存储器到存储器的DMA转运7.1程序7.1.1接线图7.1.2程序代码八、ADC转换和DMA转运数据8.1程序8.1.1接线图8.1.2程序代码一、DMA直接存储器…