SCNet:自校正卷积网络(附代码)

news/2024/5/18 12:03:15/文章来源:https://blog.csdn.net/PLANTTHESON/article/details/134112887

论文地址:https://mftp.mmcheng.net/Papers/20cvprSCNet.pdf

代码地址:https://github.com/MCG-NKU/SCNet

1.是什么?

SCNet是一种卷积神经网络,它使用自校准卷积(Self-Calibrated Convolutions)来增强子任务之间的关系,包括分类、检测和分割。不同于标准卷积采用小尺寸核同时融合空域与通道信息,所设计的SCConv可以通过自矫正操作自适应构建long-range空域与通道间相关性。SCConv的这种特性可以帮助CNN生成更具判别能力的特征表达,因其具有更丰富的信息。作者所设计的SCConv极为简单且通用,可以轻易嵌入到现有CNN架构中,而不会导致参数量增加与计算复杂度提升。

2.为什么?

传统卷积:存在输入x,卷积核k,输出z,则传统卷积操作的公式:

存在的问题;提取到的特征图没有很强的区分性
1. 每个输出的特征图都是通过所有通道求和来计算的,所有的特征图都是通过重复同一公式得到。
2. 每个空间位置的感受野主要由预定义的卷积核大小控制。

所提出了一种由多个卷积注意力组合的自校准模块,用于替换基本的卷积结构,在不增加额外参数和计算量的情况下,该模块能够产生全局的感受野。相比于标准卷积,该模块产生的特征图更具有区分度。
该模块的优势所在:
1、传统卷积只能对小区域进行卷积操作,而自校准卷积模块使每个空间位置可以自适应的编码来自长范围区域的相关信息。
2、自校准卷积是普遍适用的,能够轻易地应用到标准的卷积层中,而不需要引入任何参数和复杂的头部或改变超参数。
 

3.怎么样:

3.1 SCONV网络结构

自校正卷积具体步骤如上图所示:

第一步,输入特征图X为C X H X W大小,拆分为两个C/2 X H X W大小的X1,X2;

第二步,卷积核K的维度为C X C X H X W,将K分为4个部分,每份的作用各不相同,分别记为K1,K2,K3,K4,其维度均为C/2 X C/2 X H X W;

为了有效地收集每个空间位置的丰富的上下文信息,作者提出在两个不同的尺度空间中进行卷积特征转换:原始尺度空间中的特征图(输入共享相同的分辨率)和下采样后的具有较小分辨率的潜在空间(用于自校正) 。利用下采样后特征具有较大的感受野,因此在较小的潜在空间中进行变换后的嵌入将用作参考,以指导原始特征空间中的特征变换过程。

第三步,对自校正尺度空间进行处理(Self-Calibration)

 对T使用卷积核组K_{2}进行特征变换︰

其中Up(⋅)表示线性插值操作,得到中间参考量从小尺度空间到原始特征空间的映射,则自校准操作可以表示为:
 

 其中F_{3}(X_{1})=X_{1}*K_{3},σ表示sigmoid函数,符号“.”表示逐元素乘运算,X’被用作残差项,建立权重,用于自校准。自校准后的最终输出可以写作:
 

3.2 代码实现

 自校正卷积SCConv

class SCConv(nn.Module):def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):super(SCConv, self).__init__()# k2(Self-Calibration上半分支):先下采样,再通过卷积K2self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r), nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)# k3(Self-Calibration下半分支):通过卷积K3self.k3 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)# k4(Self-Calibration下半分支):通过卷积K4self.k4 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)def forward(self, x):identity = x# Self-Calibration上半分支:输入特征x通过k2后,上采样到和输入特征的大小一样,再与输入特征进行残差连接,再通过sigmoid函数out = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)# Self-Calibration下半分支:输入特征x通过k3后,与Self-Calibration上半分支输出进行矩阵乘法out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)# 最后,将输出out通过k4out = self.k4(out) # k4return out

将自校正卷积融入到BottleNeck模块中:SCBottleNeck

class SCBottleneck(nn.Module):"""SCNet SCBottleneck将SCConv放入BottleNeck中"""expansion = 4# 平均池化的下采样率为4pooling_r = 4 # down-sampling rate of the avg pooling layer in the K3 path of SC-Conv.def __init__(self, inplanes, planes, stride=1, downsample=None,cardinality=1, bottleneck_width=32,avd=False, dilation=1, is_first=False,norm_layer=None):super(SCBottleneck, self).__init__()group_width = int(planes * (bottleneck_width / 64.)) * cardinality # int(planes * (32 /64)) * 1 = int(0.5 * planes)self.conv1_a = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)self.bn1_a = norm_layer(group_width)self.conv1_b = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)self.bn1_b = norm_layer(group_width)self.avd = avd and (stride > 1 or is_first)if self.avd:self.avd_layer = nn.AvgPool2d(3, stride, padding=1)stride = 1# k1:通过卷积K1self.k1 = nn.Sequential(nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride,padding=dilation, dilation=dilation,groups=cardinality, bias=False),norm_layer(group_width),)self.scconv = SCConv(group_width, group_width, stride=stride,padding=dilation, dilation=dilation,groups=cardinality, pooling_r=self.pooling_r, norm_layer=norm_layer)self.conv3 = nn.Conv2d(group_width * 2, planes * 4, kernel_size=1, bias=False)self.bn3 = norm_layer(planes*4)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.dilation = dilationself.stride = stridedef forward(self, x):residual = x# 通过卷积分别得到两个通道数为输入特征通道数一半的特征out_a和out_bout_a = self.conv1_a(x)out_a = self.bn1_a(out_a)out_b = self.conv1_b(x)out_b = self.bn1_b(out_b)out_a = self.relu(out_a)out_b = self.relu(out_b)# out_a通过k1,out_b通过scconvout_a = self.k1(out_a)out_b = self.scconv(out_b)out_a = self.relu(out_a)out_b = self.relu(out_b)if self.avd:out_a = self.avd_layer(out_a)out_b = self.avd_layer(out_b)# 沿着dim=1(channel)进行拼接,再通过conv3out = self.conv3(torch.cat([out_a, out_b], dim=1))out = self.bn3(out)if self.downsample is not None:residual = self.downsample(x)# 对输出out进行残差连接out += residualout = self.relu(out)return out

参考:南开大学程明明团队新作 | ResNet的又一改进:SCNet

2D关键点检测之SCNet:Improving Convolutional Networks with Self-Calibrated Convolutions

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_190437.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web:[网鼎杯 2020 青龙组]AreUSerialz

题目 点进题目发现 需要进行代码审计 function __destruct() {if($this->op "2")$this->op "1";$this->content "";$this->process();}这里有__destruct()函数,在对象销毁时自动调用,根据$op属性的值进行…

一个基于Excel模板快速生成Excel文档的小工具

介绍 DocumentGenerator是一个Excel快速生成工具,目标以后还能实现Word、pdf等的文件的生成。该程序独立运行,可通过HTTP接口调用其生成接口。 典型使用场景为如下: 使用者编写模板文件使用者准备模板文件的填充JSON数据内容使用者通过网络…

【LVS实战】02 搭建一个LVS-NAT实验

一、网络结构 用虚拟机搭建如下的几台机器,并配置如下的ip 关于虚拟机网卡和网络的配置,可以参考 iptables章节,05节:网络转发实验 主机A模拟外网的机器 B为负载均衡的机器 C和D为 RealServer 二、C和D主机的网关设置 C和D机…

Qt 重写QSlider简单实现滑动解锁控件(指定百分比回弹效果)

组件效果图: 应用场景: 用于滑动解锁相关场景,Qt的控件鼠标监听机制对于嵌入式设备GUI可触摸屏依旧可用。 实现方式: 主要是通过继承QSlider以及搭配使用QStyleOptionSlider来实现效果。 注意细则: QStyleOptionSlider是用于定制空白区域是否可移动滑块,根据需求可…

[Linux]线程池

[Linux]线程池 文章目录 [Linux]线程池线程池的概念线程池的优点线程池的应用场景线程池的实现 线程池的概念 线程池是一种线程使用模式。线程池是一种特殊的生产消费模型,用户作为生产者,线程池作为消费者和缓冲区。 线程过多会带来调度开销&#xff0c…

第16期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练 Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以…

rabbitmq Could not find handle.exe, please install from sysinternals

报错:Could not find handle.exe, please install from sysinternals 这是由于rabbitmq 调用 windows系统中handle.exe,但是handle.exe缺失而导致的错误。 解决方案: 下载 Handle - Sysinternals | Microsoft Learn 完成后,安…

鸿蒙开发第一步-入门

本人安卓开发小趴菜一枚,在现公司做中控产品,目前通过 Java,Kotlin开发,但是随着后面可能会用到华为产品(后续华为可能不支持安卓)做中控设备,所以在领导的建议下,入手鸿蒙开发。 先说下中控产品吧,以pad开…

数据结构───链表

花费一个周时间学完了链表(的一部分),简单总结一下。 链表的学习离不开画图,将其抽象成一种逻辑模型,可以减少思考时间,方便理解。 链表大致分为8种结构,自己学习并实现了两种结构,也…

YugaByteDB -- 全新的 “PostgreSQL“ 存储层

文章目录 0 背景1 架构1.1 Master1.2 TServer1.3 Tablet 2 读写链路2.1 DDL2.2 DML2.3 事务 3 KEY 的设计4 Rocksdb 在 YB 中的一些实践总结 0 背景 YugaByteDB 的诞生也是抓住了 spanner 推行的NewSQL 浪潮的尾巴,以 PG 生态为基础 用C实现的 支持 SQL 以及 CQL 语…

Linux常用命令——chmod命令

在线Linux命令查询工具 chmod 用来变更文件或目录的权限 补充说明 chmod命令用来变更文件或目录的权限。在UNIX系统家族里,文件或目录权限的控制分别以读取、写入、执行3种一般权限来区分,另有3种特殊权限可供运用。用户可以使用chmod指令去变更文件…

SpringBoot中CommandLineRunner详解(含源码)

文章目录 前言实例导入库application.yamlRunnerSpringBootCommandLineRunnerApplication执行结果 先后顺序示例OrderRunner1OrderRunner2执行结果 通常用法加载初始化数据示例 启动后打印应用信息示例 启动异步任务示例 接口健康检查示例 外部服务调用示例 参数校验示例 动态设…

【设计模式】第14节:结构型模式之“代理模式”

一、简介 代理模式(Proxy Design Pattern)在不改变原始类(或叫被代理类)代码的情况下,通过引入代理类来给原始类附加功能。 二、优点 关注点分离访问控制延迟实例化远程访问缓存增加附加功能 三、应用场景 访问控…

GLoRE:大型语言模型的逻辑推理能力探究

最新研究揭示,尽管大语言模型LLMs在语言理解上表现出色,但在逻辑推理方面仍有待提高。为此,研究者们推出了GLoRE,一个全新的逻辑推理评估基准,包含12个数据集,覆盖三大任务类型。 实验对比发现,…

基于UDP/TCP的网络通信编程实现

小王学习录 今日鸡汤Socket套接字基于UDP来实现一个网络通信程序DatagramSocket类DatagramPacket类基于UDP的服务器端代码基于UDP的客户端代码基于TCP来实现一个网络通信程序ServerSocket类Socket类基于TCP的服务器端代码基于TCP的客户端代码优化之后的服务器端代码补充TCP长短…

详解类生到死的来龙去脉

类生命周期和加载过程 一个类在 JVM 里的生命周期有 7 个阶段,分别是加载(Loading)、校验(Verification)、准备(Preparation)、解析(Resolution)、初始化(Ini…

《数字图像处理-OpenCV/Python》连载(33)使用掩模图像控制处理区域

**本书京东优惠购书链接:https://item.jd.com/14098452.html** **本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html** 第 5 章 图像的算术运算 在OpenCV中,图像是以Numpy数组格式存储的,图像的算术运…

python不同版本的下载安装和配置

python下载和安装 1 基础软件安装 sudo apt update sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev libsqlite3-dev wget2 python压缩文件下载 我这里下载的是3.9.9,各位也可以根据自己需要下…

C语言选择排序

1.选择排序(Selection sort) 选择排序是简单直观的排序算法。 基本思想:从首元素开始,首元素与它后面的所有元素进行比较,找到数列中最小的元素,与首元素值交换。然后下一个元素与它后面的元素比较,得到第二小的元素…

Linux学习第26天:异步通知驱动开发: 主动

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 在正式开启今天的学习前,讲一讲为什么标题中加入了【主动】俩字。之前学习的阻塞和非阻塞IO,都是在被动的接受应用程序的操作。而今天的学…