图论- 最小生成树

news/2024/5/15 10:28:47/文章来源:https://blog.csdn.net/qwertyasdfghh/article/details/137123112

一、最小生成树-prim算法 

1.1 最小生成树概念

一幅图可以有很多不同的生成树,比如下面这幅图,红色的边就组成了两棵不同的生成树:

对于加权图,每条边都有权重(用最小生成树算法的现实场景中,图的边权重一般代表成本、距离这样的标量),所以每棵生成树都有一个权重和。比如上图,右侧生成树的权重和显然比左侧生成树的权重和要小。

那么最小生成树很好理解了,所有可能的生成树(包含所有顶点)中,权重和最小的那棵生成树就叫「最小生成树」

1.2 稠密图-朴素prim

和djikstra很像

const int INF = 0x3f3f3f3f; // 定义一个非常大的数,用作无穷远的初始化值
int n; // n表示图中的顶点数
int g[N][N]; // 邻接矩阵,用于存储图中所有边的权重
int dist[N]; // 用于存储其他顶点到当前最小生成树的最小距离
bool st[N]; // 用于标记每个顶点是否已经被加入到最小生成树中// Prim算法的实现,返回最小生成树的总权重
int prim() {memset(dist, 0x3f, sizeof dist); // 初始化所有顶点到MST的距离为无穷远int res = 0; // 存储最小生成树的总权重for (int i = 0; i < n; i++) { // 主循环,每次添加一个顶点到MSTint t = -1; // 用于找到当前未加入MST且dist最小的顶点for (int j = 1; j <= n; j++) // 遍历所有顶点,找到tif (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;//t就是当前加入最小生成树的顶点if (i && dist[t] == INF) return INF; // 如果图不连通,则返回INFif (i) res += dist[t]; // 非首次迭代时,累加到MST的距离st[t] = true; // 将顶点t加入到MST中//再从T出发,更新所有未加入顶点到T的距离,用于下一轮新的T的更新for (int j = 1; j <= n; j++) // 更新其他所有顶点到MST的最小距离if (!st[j]) dist[j] = min(dist[j], g[t][j]);}return res; // 返回最小生成树的总权重
}

例题: 

#include<cstring>
#include<iostream>
#include<algorithm>using namespace std;const int N = 510,M = 100010,INF = 0x3f3f3f3f;int n,m;
int g[N][N];
int dist[N];
bool used[N];int prim(){memset(dist,0x3f,sizeof dist);int res = 0;for(int i = 0;i < n;i++){int t = -1;for(int j = 1;j <= n; j++){if((!used[j]) && (t == -1 || dist[t] > dist[j]))t = j;}used[t] = true;//第一步的dist[t]为INFif(i && dist[t] == INF) return INF;if(i)res += dist[t];for(int j = 1;j <= n;j++){if(!used[j])dist[j] = min(dist[j],g[t][j]);}}return res;
}int main(){scanf("%d%d",&n,&m);//重要memset(g,0x3f,sizeof(g));for(int i = 0;i < m; i++){int u,v,w;scanf("%d%d%d",&u,&v,&w);g[u][v] = g[v][u] = min(g[u][v],w);}int r = prim();if(r == INF)puts("impossible");else printf("%d",r);return 0;
}

1.3 堆优化的prim-不常用,且复杂,一般用kruskal替代

省略 

二、最小生成树-kruskal算法

1.并查集复习

1.1 并查集(Union-Find)算法

是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识

动态连通性

简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点 p 和 p 是连通的。

2、对称性:如果节点 p 和 q 连通,那么 q 和 p 也连通。

3、传递性:如果节点 p 和 q 连通,q 和 r 连通,那么 p 和 r 也连通。

 现在我们的 Union-Find 算法主要需要实现这三个 API:

class UF {
public:/* 将 p 和 q 连接 */void union(int p, int q);/* 判断 p 和 q 是否连通 */bool connected(int p, int q);/* 返回图中有多少个连通分量 */int count();
};

函数功能说明:

比如说之前那幅图,0~9 任意两个不同的点都不连通,调用 connected 都会返回 false,连通分量为 10 个。

如果现在调用 union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。

再调用 union(1, 2),这时 0,1,2 都被连通,调用 connected(0, 2) 也会返回 true,连通分量变为 8 个。

 初始化:

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

代码如下:

class UF {// 记录连通分量private:int count;// 节点 x 的父节点是 parent[x]int* parent;public:/* 构造函数,n 为图的节点总数 */UF(int n) {// 一开始互不连通this->count = n;// 父节点指针初始指向自己parent = new int[n];for (int i = 0; i < n; i++)parent[i] = i;}/* 其他函数 */
};

 union实现:

操作如下:

代码如下:

class UF {// 为了节约篇幅,省略上文给出的代码部分...public:void union(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;// 将两棵树合并为一棵parent[rootP] = rootQ;// parent[rootQ] = rootP 也一样count--; // 两个分量合二为一}/* 返回某个节点 x 的根节点 */int find(int x) {// 根节点的 parent[x] == xwhile (parent[x] != x)x = parent[x];return x;}/* 返回当前的连通分量个数 */int count() {return count;}
};

 connected实现:

代码如下:

class UF {
private:// 省略上文给出的代码部分...public:bool connected(int p, int q) {int rootP = find(p);int rootQ = find(q);return rootP == rootQ;}
};

 1.2 平衡性优化-union优化

分析union和connected的时间复杂度,我们发现,主要 API connected和 union 中的复杂度都是 find 函数造成的,所以说它们的复杂度和 find 一样。

find 主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是 logN,但这并不一定。logN 的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 N

图论解决的都是诸如社交网络这样数据规模巨大的问题,对于 union 和 connected 的调用非常频繁,每次调用需要线性时间完全不可忍受。

关键在于 union 过程,我们一开始就是简单粗暴的把 p 所在的树接到 q 所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

 长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个 size 数组,记录每棵树包含的节点数,我们不妨称为「重量」:

class UF {
private:int count;int* parent;// 新增一个数组记录树的“重量”int* size;public:UF(int n) {this->count = n;parent = new int[n];// 最初每棵树只有一个节点// 重量应该初始化 1size = new int[n];for (int i = 0; i < n; i++) {parent[i] = i;size[i] = 1;}}/* 其他函数 */
};

比如说 size[3] = 5 表示,以节点 3 为根的那棵树,总共有 5 个节点。这样我们可以修改一下 union 方法:

class UF {
private:// 为了节约篇幅,省略上文给出的代码部分...
public:void union(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;// 小树接到大树下面,较平衡if (size[rootP] > size[rootQ]) {parent[rootQ] = rootP;size[rootP] += size[rootQ];} else {parent[rootP] = rootQ;size[rootQ] += size[rootP];}count--;}
};

这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在 logN 这个数量级,极大提升执行效率。

此时,find , union , connected 的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。

1.3 路径压缩-find优化

其实我们并不在乎每棵树的结构长什么样,只在乎根节点

因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

这样每个节点的父节点就是整棵树的根节点,find 就能以 O(1) 的时间找到某一节点的根节点,相应的,connected 和 union 复杂度都下降为 O(1)。

要做到这一点主要是修改 find 函数逻辑,非常简单,但你可能会看到两种不同的写法。

方法1:

class UF {// 为了节约篇幅,省略上文给出的代码部分...private:int find(int x) {while (parent[x] != x) {// 这行代码进行路径压缩parent[x] = parent[parent[x]];x = parent[x];}return x;}
};

每次使得当前x指向父节点的父节点,这样会将一些节点向上移,然后缩短树的长度

压缩结束为: 

方法二:

class UF {// 为了节约篇幅,省略上文给出的代码部分...// 第二种路径压缩的 find 方法public:int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}
};

 其迭代写法如下(便于理解):

int find(int x) {// 先找到根节点int root = x;while (parent[root] != root) {root = parent[root];}// 然后把 x 到根节点之间的所有节点直接接到根节点下面int old_parent = parent[x];while (x != root) {parent[x] = root;x = old_parent;old_parent = parent[old_parent];}return root;
}

最终效果: 

1.4 并查集框架-优化后 

class UF {
private:// 连通分量个数int count;// 存储每个节点的父节点int *parent;public:// n 为图中节点的个数UF(int n) {this->count = n;parent = new int[n];for (int i = 0; i < n; i++) {parent[i] = i;}}// 将节点 p 和节点 q 连通void union_(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;parent[rootQ] = rootP;// 两个连通分量合并成一个连通分量count--;}// 判断节点 p 和节点 q 是否连通bool connected(int p, int q) {int rootP = find(p);int rootQ = find(q);return rootP == rootQ;}int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}// 返回图中的连通分量个数int count_() {return count;}
};

2.kruskal

给你输入编号从 0 到 n - 1 的 n 个结点,和一个无向边列表 edges(每条边用节点二元组表示),请你判断输入的这些边组成的结构是否是一棵树。

如果输入:

n = 5
edges = [[0,1], [0,2], [0,3], [1,4]]

 这些边构成的是一棵树,算法应该返回 true:

 输入:

n = 5
edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]

 形成的就不是树结构了,因为包含环:

我们思考为何会产生环?仔细体会下面两种添边的差别

 

总结一下规律就是:

对于添加的这条边,如果该边的两个节点本来就在同一连通分量里,那么添加这条边会产生环;反之,如果该边的两个节点不在同一连通分量里,则添加这条边不会产生环

那么只需要在union两节点之前先检测两节点是否已经connection,如果已连接所有添加后会生成环,则返回false。同时需要注意count==1,不然就是森林了。

代码如下:

class UF {
public:vector<int> parent;UF(int n) {for (int i = 0; i < n; i++) {parent.push_back(i);}}int find(int x) {while (x != parent[x]) {parent[x] = parent[parent[x]];x = parent[x];}return x;}void union_(int p, int q) {int root_p = find(p);int root_q = find(q);parent[root_p] = root_q;}bool connected(int p, int q) {int root_p = find(p);int root_q = find(q);return root_p == root_q;}int count() {int cnt = 0;for (int i = 0; i < parent.size(); i++) {if (parent[i] == i) {cnt++;}}return cnt;}
};bool validTree(int n, vector<vector<int>>& edges) {UF uf(n);// 遍历所有边,将组成边的两个节点进行连接for (auto edge : edges) {int u = edge[0];int v = edge[1];// 若两个节点已经在同一连通分量中,会产生环if (uf.connected(u, v)) {return false;}// 这条边不会产生环,可以是树的一部分uf.union_(u, v);}// 要保证最后只形成了一棵树,即只有一个连通分量return uf.count() == 1;
}

3.连接所有点的最小费用-kruskal算法

 所谓最小生成树,就是图中若干边的集合(我们后文称这个集合为 mst,最小生成树的英文缩写),你要保证这些边:

1、包含图中的所有节点。

2、形成的结构是树结构(即不存在环)。

3、权重和最小。

有之前题目的铺垫,前两条其实可以很容易地利用 Union-Find 算法做到,关键在于第 3 点,如何保证得到的这棵生成树是权重和最小的。

这里就用到了贪心思路:

将所有边按照权重从小到大排序,从权重最小的边开始遍历,如果这条边和 mst 中的其它边不会形成环,则这条边是最小生成树的一部分,将它加入 mst 集合;否则,这条边不是最小生成树的一部分,不要把它加入 mst 集合

以此题为例:

 此题虽然是使用kruskal算法,但是并不是直接套用,还要有一些值得注意的事项

1:我们要将题目中的给出点,转换为点组合并且将权重添加进去

在题中只给出一个点的坐标,我们需要想方法转换为两个点的链接,所以需要将每个点(两个坐标组合)转换为一个符号标记,在链接数组把相连的两个符号放一起就行了,很明显,我们使用0-n-1来记录每一个点是最合适的,不仅方便遍历也一目了然

因此有如下代码:

        vector<vector<int>> edges;for(int i =0;i < points.size();i++){//此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始for(int j = i+1;j < points.size();j++){// if(i == j)continue;//因为j=i+1开始,所有不需要这句判断int w1 = abs(points[i][0]-points[j][0]);int w2 = abs(points[i][1]-points[j][1]);edges.push_back({i,j,w1+w2});}}

 2:我们要对得到的数组进行排序,而且是对权重维度排序,这就需要我们利用lambda来自定义sort的排序方式了

有代码如下:

        sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){return a[2] < b[2];});

依照kruskal算法,可以写出如下完整代码:

class uf{private:int count;vector<int> parent;public:uf(int n){this->count = n;// parent = new int[n];parent.resize(n);for(int i=0;i < n;i++){parent[i] = i;}}int find(int x){if(parent[x]!=x)parent[x] = find(parent[x]);return  parent[x];}void Union(int p,int q){int rootp = find(p);int rootq = find(q);if(rootp == rootq)return;parent[rootp] = rootq;count--;}bool connection(int p,int q){int rootp = find(p);int rootq = find(q);return rootp == rootq;}
};class Solution {
public:int minCostConnectPoints(vector<vector<int>>& points) {vector<vector<int>> edges;for(int i =0;i < points.size();i++){//此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始for(int j = i+1;j < points.size();j++){// if(i == j)continue;//因为j=i+1开始,所有不需要这句判断int w1 = abs(points[i][0]-points[j][0]);int w2 = abs(points[i][1]-points[j][1]);edges.push_back({i,j,w1+w2});}}sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){return a[2] < b[2];});uf uf(points.size());int sum_w = 0;for(auto& s : edges){int q = s[0],p = s[1],w = s[2];if(uf.connection(p,q))continue;sum_w +=w;uf.Union(p,q);}return sum_w;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1028659.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每天五分钟深度学习:使用神经网络完成人脸的特征点检测

本文重点 我们上一节课程中学习了如何利用神经网络对图片中的对象进行定位,也就是通过输出四个参数值bx、by、bℎ和bw给出图片中对象的边界框。 本节课程我们学习特征点的检测,神经网络可以通过输出图片中对象的特征点的(x,y)坐标来实现对目标特征的识别,我们看几个例子。…

java 溯本求源之基础(八)之 jar(下篇)

上篇中我们介绍了 Java 类加载顺序、JAR 命令的使用以及 MANIFEST.MF 文件的作用。Java 类加载顺序包括 Bootstrap classes、Extension classes 和 Class Path。JAR 命令是一个归档和压缩工具&#xff0c;用于打包 Java 应用程序。MANIFEST.MF 文件存储打包文件的元信息&#x…

Midjourney AI绘图工具介绍及使用

介绍 Midjourney是一款目前被誉为最强的AI绘图工具。只要输入想到的文字&#xff0c;就能通过人工智能产出相对应的图片。 官网只是宣传和登录入口&#xff0c;提供个人主页、订阅管理等功能&#xff0c;Midjourney实际的绘画功能&#xff0c;是在另外一个叫discord的产品中实…

关于未来自我的发展和一些学习方法(嵌入式方向)

我是一名大二的学生&#xff0c;考研还是就业&#xff0c;到底是重视专业课还是重视数学英语&#xff0c;这些问题一直困扰了我很久&#xff0c;但如今已经有了一些浅显的认识&#xff0c;所以才会想写这样一篇文章来记录一下自己的状态和未来的规划 下面的看法都是个人的看法&…

Day26 手撕各种集合底层源码(一)

Day26 手撕各种集合底层源码&#xff08;一&#xff09; 一、手撕ArrayList底层源码 1、概念&#xff1a; ArrayList的底层实现是基于数组的动态扩容结构。 2、思路&#xff1a; 1.研究继承关系 2.研究属性 3.理解创建集合的过程 – 构造方法的底层原理 4.研究添加元素的过程…

wpf 自定义命令

自定义命令 MyCommand.cs public class MyCommand : ICommand {private readonly Action<Object> execAction;private readonly Func<Object,bool> changedFunc;public event EventHandler? CanExecuteChanged;public MyCommand(Action<object> execAction…

离线linux服务器安装mysql8

本文的服务器环境&#xff1a;openEuler毛坯版的&#xff0c;很多常用的指令都没有预装&#xff0c;比如rpm、tar等等&#xff0c;没有网络坏境&#xff0c;需要自己手动配置本地yum仓库&#xff0c;安装相关指令 1、检查服务器是否已经安装了MySQL 1.1、查询mysql以安装的相关…

NRF52832修改OTA升级时的bootloader蓝牙MAC

NRF52832在OTA升级时&#xff0c;修改了APP的蓝牙MAC会导致无法升级&#xff0c;原因是OTA程序的蓝牙MAC没有被修改所以手机扫描蓝牙时无法连接 解决办法 在bootloader的程序里面加入修改蓝牙mac地址的代码实现原理&#xff1a; 在bootloader蓝牙广播开启之前修改蓝牙mac 通…

无人车网关案例:记SV900无人清扫车网关的现场应用

​随着无人驾驶技术的不断发展,无人车辆已经开始广泛应用于物流配送、环境保洁、巡逻监控等众多领域,助力城市运营更加高效智能。而要实现无人车辆的安全可靠运行,关键在于选择一款性能卓越的车载网络通信系统.在这一背景下,星创易联推出了SV900无人车网关系列产品。它集5G/4G网…

算法打卡day17

今日任务&#xff1a; 1&#xff09;654.最大二叉树 2&#xff09;617.合并二叉树 3&#xff09;700.二叉搜索树中的搜索 4&#xff09;98.证二叉搜索树 654.最大二叉树 题目链接&#xff1a;654. 最大二叉树 - 力扣&#xff08;LeetCode&#xff09; 给定一个不含重复元素的整…

计算机网络数据链路层知识总结

物理层知识总结传送门 计算机网络物理层知识点总结-CSDN博客 功能 功能概述 一些基本概念 结点:主机、路由器链路﹔网络中两个结点之间的物理通道&#xff0c;链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。数据链路︰网络中两个结点之间的逻辑通道&a…

HarmonyOS实战开发-如何实现一个自定义抽奖圆形转盘

介绍 本篇Codelab是基于画布组件、显式动画&#xff0c;实现的一个自定义抽奖圆形转盘。包含如下功能&#xff1a; 通过画布组件Canvas&#xff0c;画出抽奖圆形转盘。通过显式动画启动抽奖功能。通过自定义弹窗弹出抽中的奖品。 相关概念 Stack组件&#xff1a;堆叠容器&am…

STM32第十节(中级篇):EXTI(第一节)——EXTI功能框图及初始化结构体讲解(包括STM32中断应用总结)

目录 前言 STM32第十节&#xff08;中级篇&#xff09;&#xff1a;EXTI&#xff08;第一节&#xff09;——EXTI功能框图及初始化结构体讲解&#xff08;包括STM32中断应用总结&#xff09; EXTI功能框图 EXTI初始化结构体讲解 STM32中断应用总结 NVIC介绍 优先级 优先…

后端常问面经之并发

volatile 关键字 volatile关键字是如何保证内存可见性的&#xff1f;底层是怎么实现的&#xff1f; "观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现&#xff0c;加入volatile关键字时&#xff0c;会多出一个lock前缀指令”lock前缀指令实际上相…

Radash一款JavaScript最新的实用工具库,Lodash的平替!

文章目录 Lodash 的痛点进入正题--Radash特点 举例几个常用的api 一说lodash应该大部分前端同学都知道吧&#xff0c;陪伴我们好多年的JavaScript工具库&#xff0c;但是自从 ES6 出现后就慢慢退出前端人的视线&#xff0c;能ES6写的代码绝对不会用Lodash&#xff0c;也不是完全…

C#预处理器指令(巨细版)

文章目录 一、预处理器指令的基本概念二、预处理器指令的基本规则三、C# 预处理器指令详解3.1 #define 和 #undef3.2 #if、#else、#elif 和 #endif3.3 #line3.4 #error 和 #warning3.5 #region 和 #endregion 四、高级应用&#xff1a;预处理器指令的最佳实践4.1 条件编译的最佳…

PS从入门到精通视频各类教程整理全集,包含素材、作业等复发(2)

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 初级教程素材 等文件 https://www.alipan.com/s/fC…

【edge浏览器无法登录某些网站,以及迅雷插件无法生效的解决办法】

edge浏览器无法登录某些网站&#xff0c;以及迅雷插件无法生效的解决办法 edge浏览器无法登录某些网站&#xff0c;但chrome浏览器可以登录浏览器插件无法使用&#xff0c;比如迅雷如果重装插件重装浏览器重装迅雷后仍然出现问题 edge浏览器无法登录某些网站&#xff0c;但chro…

【生活】如何学习理财

文章目录 1. 了解基本财务知识2. 制定预算4321理财法则 3. 学习投资知识股票债券基金外汇房地产 4. 了解保险知识人身保险人寿保险健康保险意外伤害保险 财产保险财产损失保险责任保险信用保险 5. 寻求专业建议6. 持续学习和实践参考 首先我们想文心一言提问&#xff1a;如何学…

二十二、软考-系统架构设计师笔记-真题解析-2018年真题

软考-系统架构设计师-2018年上午选择题真题 考试时间 8:30 ~ 11:00 150分钟 1.在磁盘调度管理中&#xff0c;应先进行移臂调度&#xff0c;再进行旋转调度。假设磁盘移动臂位于21号柱面上&#xff0c;进程的请求序列如下表所示。如果采用最短移臂调度算法&#xff0c;那么系统…