HTTPS握手解析

news/2024/4/28 1:13:33/文章来源:https://blog.csdn.net/m0_63310537/article/details/136952233
  • TLS握手过程

    • HTTP 由于是明文传输,所谓的明文,就是说客户端与服务端通信的信息都是肉眼可见的,随意使用一个抓包工具都可以截获通信的内容。

    • 存在的风险

      • 窃听风险,比如通信链路上可以获取通信内容,用户号容易没。

      • 篡改风险,比如强制植入垃圾广告,视觉污染,用户眼容易瞎。

      • 冒充风险,比如冒充淘宝网站,用户钱容易没。

    • HTTPS 在 HTTP 与 TCP 层之间加入了 TLS 协议,来解决上述的风险。

    • 如何解决的呢

      • 信息加密: HTTP 交互信息是被加密的,第三方就无法被窃取;

      • 校验机制:校验信息传输过程中是否有被第三方篡改过,如果被篡改过,则会有警告提示;

      • 身份证书:证明淘宝是真的淘宝网;

    • 握手过程

      • 每一个「框」都是一个记录(record),记录是 TLS 收发数据的基本单位,类似于 TCP 里的 segment。多个记录可以组合成一个 TCP 包发送,所以通常经过「四个消息」就可以完成 TLS 握手,也就是需要 2个 RTT 的时延,然后就可以在安全的通信环境里发送 HTTP 报文,实现 HTTPS 协议。

      • HTTPS 是应用层协议,需要先完成 TCP 连接建立,然后走 TLS 握手过程后,才能建立通信安全的连接。

      • 不同的密钥交换算法,TLS 的握手过程可能会有一些区别。

      • 因为考虑到性能的问题,所以双方在加密应用信息时使用的是对称加密密钥,而对称加密密钥是不能被泄漏的,为了保证对称加密密钥的安全性,所以使用非对称加密的方式来保护对称加密密钥的协商,这个工作就是密钥交换算法负责的。

    • RSA握手过程

      • 传统的 TLS 握手基本都是使用 RSA 算法来实现密钥交换的,在将 TLS 证书部署服务端时,证书文件其实就是服务端的公钥,会在 TLS 握手阶段传递给客户端,而服务端的私钥则一直留在服务端,一定要确保私钥不能被窃取。

      • 第一次握手

        • 客户端首先会发一个「Client Hello」消息,字面意思我们也能理解到,这是跟服务器「打招呼」。

        • 消息里面有客户端使用的 TLS 版本号、支持的密码套件列表,以及生成的随机数(Client Random),这个随机数会被服务端保留,它是生成对称加密密钥的材料之一

      • 第二次握手

        • 当服务端收到客户端的「Client Hello」消息后,会确认 TLS 版本号是否支持,和从密码套件列表中选择一个密码套件,以及生成随机数

        • 接着,返回「Server Hello」消息,消息里面有服务器确认的 TLS 版本号,也给出了随机数(Server Random),然后从客户端的密码套件列表选择了一个合适的密码套件

        • 密码套件基本的形式是「密钥交换算法 + 签名算法 + 对称加密算法 + 摘要算法」

        • 一般 WITH 单词前面有两个单词,第一个单词是约定密钥交换的算法,第二个单词是约定证书的验证算法。

        • 就前面这两个客户端和服务端相互「打招呼」的过程,客户端和服务端就已确认了 TLS 版本和使用的密码套件,而且你可能发现客户端和服务端都会各自生成一个随机数,并且还会把随机数传递给对方。

        • 这两个随机数是后续作为生成「会话密钥」的条件,所谓的会话密钥就是数据传输时,所使用的对称加密密钥。

        • 服务端为了证明自己的身份,会发送「Server Certificate」给客户端,这个消息里含有数字证书。

        • 服务端发了「Server Hello Done」消息,目的是告诉客户端,我已经把该给你的东西都给你了,本次打招呼完毕。

      • 客户端验证证书

        • 数字证书和CA机构

          • 一个数字证书通常包含了:

            • 公钥;

            • 持有者信息;

            • 证书认证机构(CA)的信息;

            • CA 对这份文件的数字签名及使用的算法;

            • 证书有效期;

            • 还有一些其他额外信息;

          • 数字证书的作用

            • 是用来认证公钥持有者的身份,以防止第三方进行冒充。

          • 数字证书的来源和CA机构的

            • 为了让服务端的公钥被大家信任,服务端的证书都是由 CA (Certificate Authority,证书认证机构)签名的,CA 就是网络世界里的公安局、公证中心,具有极高的可信度,所以由它来给各个公钥签名,信任的一方签发的证书,那必然证书也是被信任的。

            • 之所以要签名,是因为签名的作用可以避免中间人在获取证书时对证书内容的篡改

          • 数字证书签发

          • 证书链

            • 证书的验证过程中还存在一个证书信任链的问题,因为我们向 CA 申请的证书一般不是根证书签发的,而是由中间证书签发的

              • 比如百度的证书

            • 操作系统里一般都会内置一些根证书

            • 为什么需要证书链这么麻烦的流程?

              • 为了确保根证书的绝对安全性,将根证书隔离地越严格越好,不然根证书如果失守了,那么整个信任链都会有问题。

      • 第三次握手

        • 客户端验证完证书后,认为可信则继续往下走

        • 客户端就会生成一个新的随机数,用服务器的 RSA 公钥加密该随机数,通过「Client Key Exchange」消息传给服务端

        • 服务端收到后,用 RSA 私钥解密,得到客户端发来的随机数

        • 客户端和服务端双方都共享了三个随机数,分别是 Client Random、Server Random、pre-master。

        • 于是,双方根据已经得到的三个随机数,生成会话密钥(Master Secret),它是对称密钥,用于对后续的 HTTP 请求/响应的数据加解密。

        • 生成完「会话密钥」后,然后客户端发一个「Change Cipher Spec」,告诉服务端开始使用加密方式发送消息。

        • 客户端再发一个「Encrypted Handshake Message(Finishd)」消息,把之前所有发送的数据做个摘要,再用会话密钥(master secret)加密一下,让服务器做个验证,验证加密通信「是否可用」和「之前握手信息是否有被中途篡改过」。

        • 「Change Cipher Spec」之前传输的 TLS 握手数据都是明文,之后都是对称密钥加密的密文。

      • 第四次握手

        • 服务器也是同样的操作,发「Change Cipher Spec」和「Encrypted Handshake Message」消息,如果双方都验证加密和解密没问题,那么握手正式完成。

    • RSA算法的缺陷

      • 使用 RSA 密钥协商算法的最大问题是不支持前向保密

      • 因为客户端传递随机数(用于生成对称加密密钥的条件之一)给服务端时使用的是公钥加密的,服务端收到后,会用私钥解密得到随机数。所以一旦服务端的私钥泄漏了,过去被第三方截获的所有 TLS 通讯密文都会被破解。

      • 为了解决这个问题,后面就出现了 ECDHE 密钥协商算法,我们现在大多数网站使用的正是 ECDHE 密钥协商算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1027155.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python最强自动化神器!

1、Playwright介绍 Playwright是一个由Microsoft开发的开源自动化测试工具,它可以用于测试Web应用程序。Playwright支持多种浏览器,包括Chrome、Firefox和WebKit,同时也支持多种编程语言,如JavaScript、TypeScript、Python和C#。…

xilinx linux AXI GPIO 驱动学习

vivado工程 vivado 配置一个 AXI GPIO&#xff0c; 全输出&#xff0c;宽度为1 设备树解读 生成的对应pl.dtsi设备树文件如下 axi_gpio: gpio40020000 {#gpio-cells <2>;clock-names "s_axi_aclk";clocks <&clkc 15>;compatible "xlnx,…

淘宝app商品数据API接口|item_get_app-获得淘宝app商品详情原数据

获得淘宝app商品详情原数据 API返回值说明 item_get_app-获得淘宝app商品详情原数据 公共参数​​​​​​ 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地…

[ Linux ] git工具的基本使用(仓库的构建,提交)

1.安装git yum install -y git 2.打开Gitee&#xff0c;创建你的远程仓库&#xff0c;根据提示初始化本地仓库&#xff08;这里以我的仓库为例&#xff09; 新建好仓库之后跟着网页的提示初始化便可以了 3.add、commit、push三板斧 git add . //add仓库新增&#xff08;变…

软考 - 系统架构设计师 - 关系模型的完整性规则

前言 关系模型的完整性规则是一组用于确保关系数据库中数据的完整性和一致性的规则。这些规则定义了在关系数据库中如何存储、更新和查询数据&#xff0c;以保证数据的准确性和一致性。 详情 关系模型的完整性规则主要包括以下三类&#xff1a; 实体完整性规则 这是确保每个…

C++判断点是否在三角形内部

1.问题 判断点是否在三角形内部。 2.思路 计算向量AB和AP的叉积、向量BC和BP的叉积、向量CA和CP的叉积&#xff0c;如果所有的叉积符号相同&#xff0c;则点在三角形内部。 3.代码实现和注释 #include <iostream> #include <vector>// 计算两个二维向量的叉积 …

第十一届蓝桥杯大赛第二场省赛试题 CC++ 研究生组-回文日期

solution1&#xff08;通过50%&#xff09; #include<stdio.h> void f(int a){int t a;while(a){printf("%d", a % 10);a / 10;}if(t < 10) printf("0"); } int isLeap(int n){if(n % 400 0 || (n % 4 0 && n % 100 ! 0)) return 1;r…

QT+GDAL实现影像的读取和显示

详细流程参考https://blog.csdn.net/deirjie/article/details/37872743 代码 //open_image.h #pragma once #include <QtWidgets/QMainWindow> #include "ui_open_image.h" #include "gdal_priv.h" #include <QMessageBox> #include <QFi…

是谁?阻止CXL在AI场景大展身手~

CXL虽然被视为业内新宠&#xff0c;但好像在AI场景的应用反而没有得到广泛的响应。 AI场景对内存带宽、容量以及数据一致性有着极高需求&#xff0c;特别是在深度学习训练和推理过程中&#xff0c;大量数据需要在CPU、GPU、加速器以及内存之间快速、高效地流动。CXL作为一种新…

Java基础面试复习

一、java基础 1、jdk、jre、jvm的区别 jdk&#xff1a;Java程序开发工具包。 jre&#xff1a;Java程序运行环境。 jvm&#xff1a;Java虚拟机。 2、一个Java源文件中是否可以包含多个类有什么限制 解&#xff1a;可以包含多个类但是只有一个类生命成public并且要和文件名一致 …

代码随想录训练营day18

第六章 二叉树 part05 1.LeetCode.找树左下角的值 1.1题目链接&#xff1a;513.找树左下角的值 文章讲解&#xff1a;代码随想录 视频讲解&#xff1a;B站卡哥视频 1.2思路&#xff1a;本题要找出树的最后一行的最左边的值。此时大家应该想起用层序遍历是非常简单的了&…

24计算机考研调剂 | 【官方】北京科技大学

北京科技大学 考研调剂招生信息 招生专业&#xff1a; 085404&#xff08;计算机技术&#xff09; 081200&#xff08;计算机科学与技术&#xff09; 调剂要求&#xff1a;&#xff08;调剂基本分数&#xff09; 我中心将在教育部“全国硕士生招生调剂服务系统”&#xff08…

MRC是谁?- 媒体评级委员会 Media Rating Council

在在线广告的世界里&#xff0c;有许多不同的技术和实践用于提供和衡量广告。对于广告商、出版商和营销人员来说&#xff0c;了解这些技术是如何工作的以及如何有效使用这些技术很重要。在这方面发挥关键作用的一个组织是媒体评级委员会&#xff08;MRC&#xff09;。 1. 了解…

市场复盘总结 20240328

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 40% 最常用的…

C#手术麻醉系统源码 可对接HIS LIS PACS 医疗系统各类设备 医院手麻系统源码

C#手术麻醉系统源码 可对接HIS LIS PACS 医疗系统各类设备 手术麻醉信息管理系统主要还是为了手术室开发提供全面帮助的系统&#xff0c;其主要是由监护设备数据采集子系统和麻醉临床系统两个子部分组成。包括从手术申请到手术分配&#xff0c;再到术前访视、术中记录及术后…

并发编程之Callable方法的详细解析(带小案例)

Callable &#xff08;第三种线程实现方式&#xff09; Callable与Runnable的区别 Callable与Runnable的区别 实现方法名称不一样 有返回值 抛出了异常 ​class Thread1 implements Runnable{Overridepublic void run() { ​} } ​ class Thread2 implements Callable<…

软件推荐 篇三十七:安卓软件推荐IP Tools「IP工具」:全面解析网络状态与管理的必备神器

引言&#xff1a; 随着互联网的普及&#xff0c;网络已经成为我们日常生活中不可或缺的一部分。无论是工作、学习还是娱乐&#xff0c;我们都需要通过网络来进行各种操作。然而&#xff0c;网络问题的出现往往会给我们带来诸多困扰。为了更好地管理和优化网络&#xff0c;我们…

虹科Pico汽车示波器 | 免拆诊断案例 | 2018款东风风神AX7车发动机怠速抖动、加速无力

一、故障现象 一辆2018款东风风神AX7车&#xff0c;搭载10UF01发动机&#xff0c;累计行驶里程约为5.3万km。该车因发动机怠速抖动、加速无力及发动机故障灯异常点亮而进厂维修&#xff0c;维修人员用故障检测仪检测&#xff0c;提示气缸3失火&#xff1b;与其他气缸对调点火线…

【Qt】使用Qt实现Web服务器(五):QtWebApp上传文件、详解请求数据处理过程

1、示例 1)演示 2)上传图片 3)显示图片 2、源码 示例源码Demo1->FileUploadController void FileUploadController::service(HttpRequest& request, HttpResponse& response)

快速幂算法在Java中的应用

引言&#xff1a; 在计算机科学和算法领域中&#xff0c;快速幂算法是一种用于高效计算幂运算的技术。在实际编程中&#xff0c;特别是在处理大数幂运算时&#xff0c;快速幂算法能够显著提高计算效率。本文将介绍如何在Java中实现快速幂算法&#xff0c;并给出一些示例代码和应…