【推导结果】如何得到 回归均方误差 估计系数的标准误

news/2024/4/27 22:44:26/文章来源:https://blog.csdn.net/weixin_43168119/article/details/137126272

对线性回归模型系数标准差标准误的理解

1.生成数据

yxe
3.610.63
3.42-1.38
7.631.01
7.44-1.01
11.651.38
11.46-0.63

在这里插入图片描述

2.回归

y = β 0 + β 1 x + ϵ y = \beta_{0}+\beta_{1}x+\epsilon y=β0+β1x+ϵ

y i = β 0 + β 1 x i + e i y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i} yi=β0+β1xi+ei

reg y xSource |       SS           df       MS      Number of obs   =         6
-------------+----------------------------------   F(1, 4)         =     34.60Model |   57.422285         1   57.422285   Prob > F        =    0.0042Residual |  6.63771505         4  1.65942876   R-squared       =    0.8964
-------------+----------------------------------   Adj R-squared   =    0.8705Total |  64.0600001         5      12.812   Root MSE        =    1.2882------------------------------------------------------------------------------y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------x |   1.811429   .3079359     5.88   0.004     .9564615    2.666396_cons |       1.16   1.199238     0.97   0.388    -2.169618    4.489618
------------------------------------------------------------------------------

3.计算回归的标准误差

(1)SSE\SSR\SST

S S E SSE SSE: Sum of Squares Error,
S S E = ∑ i = 1 n ( y i ^ − y i ) 2 = ∑ i = 1 n ( e i − e ˉ ) 2 SSE= \sum_{i=1}^{n}(\hat{y_{i}}-y_{i})^2 = \sum_{i=1}^{n}(e_{i}-\bar{e})^2 SSE=i=1n(yi^yi)2=i=1n(eieˉ)2
在本示例中, S S E = ( 3.6 − 2.97 ) 2 + ( 3.4 − 4.78 ) 2 + ( 7.6 − 6.95 ) 2 + ( 7.4 − 8.41 ) 2 + ( 11.6 − 10.22 ) 2 + ( 11.4 − 12.03 ) 2 = 6.637713 SSE=(3.6-2.97)^2+(3.4-4.78)^2+(7.6-6.95)^2+(7.4-8.41)^2+(11.6-10.22)^2+(11.4-12.03)^2 = 6.637713 SSE=(3.62.97)2+(3.44.78)2+(7.66.95)2+(7.48.41)2+(11.610.22)2+(11.412.03)2=6.637713

S S R SSR SSR: Sum of Squares of the Regression
S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR= \sum_{i=1}^{n}(\hat{y_{i}}-\bar{y})^2 SSR=i=1n(yi^yˉ)2
S S T SST SST: Total Sum of Squares
S S T = ∑ i = 1 n ( y i − y ˉ ) 2 SST= \sum_{i=1}^{n}(y_{i}-\bar{y})^2 SST=i=1n(yiyˉ)2

(2)MSE

回归的标准误差为:
s 2 = M S E = S S E n − K = ∑ i = 1 n ( e i − e ˉ ) 2 n − K s^{2}=MSE=\frac{SSE}{n-K}=\frac{\sum_{i=1}^{n}(e_{i}-\bar{e})^2}{n-K} s2=MSE=nKSSE=nKi=1n(eieˉ)2

s = M S E s=\sqrt{MSE} s=MSE

s 2 = 6.637713 6 − 2 = 1.6594282 ; s = 1.288188 s^2 = \frac{6.637713}{6 - 2}=1.6594282; \ \ \ \ \ \ \ s=1.288188 s2=626.637713=1.6594282;       s=1.288188

(3)SE

S β ^ = s 2 ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{s^2}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)s2

S β ^ = 1 n − 2 ∑ i = 1 n e 2 ^ ∑ i = 1 n ( x i − x ˉ ) S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{n-2}\sum_{i=1}^{n} \hat{e^{2}}}{{\sum_{i=1}^{n}(x_{i}-\bar{x})}}} Sβ^=i=1n(xixˉ)n21i=1ne2^

S β ^ = 1 4 × 6.637713 ( 1 − 3.5 ) 2 + ( 2 − 3.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.5 ) 2 + ( 5 − 3.5 ) 2 + ( 6 − 3.5 ) 2 S_{\hat{\beta}} = \sqrt{\frac{\frac{1}{4} \times 6.637713}{(1-3.5)^2+(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2+(6-3.5)^2}} Sβ^=(13.5)2+(23.5)2+(33.5)2+(43.5)2+(53.5)2+(63.5)241×6.637713

SE为何会很大?

  • 样本少,分母可能大
  • 极端值多
  • X分布散(X距X均值离差太大)

Appendix

1. simulation code
clear 
set obs 6
gen y = 3.6 in 1 
replace y = 3.4 in 2 
replace y = 7.6 in 3
replace y = 7.4 in 4
replace y = 11.6 in 5
replace y = 11.4 in 6
gen x = _nreg y x
predict xbgen e = y - xb
format %9.2f xb 
format %9.2f e 
egen addtext_mean = rowmean(y xb)
forv i = 1/6{su add in `i',dglobal y`i' = r(mean)su e in `i',dglobal e`i' = r(mean)
}tw (scatter y x, mlab(y) mlabp(1)) /// (lfit y x) /// (scatter xb x, mlab(xb) mlabp(1)) /// (rspike y xb x) ,legend(off) /// text($y1 0.9 "0.63",size(vsmall) color(red)) /// text($y2 1.9 "-1.38",size(vsmall) color(red)) /// text($y3 2.9 "1.01",size(vsmall) color(red)) /// text($y4 3.9 "-1.01",size(vsmall) color(red)) /// text($y5 4.9 "1.38",size(vsmall) color(red)) /// text($y6 5.9 "-0.63",size(vsmall) color(red)) 
2.序列相关 同方差 or 异方差

对于①参数线性②不存在“严格多重共线性”③随机抽样④严格外生性⑤“球形扰动项”(条件同方差+不存在自相关)五个假定均能够满足时

OLS估计量为BLUE,最优无偏线性估计量

此时,x的协方差矩阵为:
V a r ( β 1 ^ ∣ x ) = V a r ( β 1 + ∑ ( x i − x ˉ ) e i ∑ ( x i − x ˉ ) ∣ x ) Var(\hat{\beta_{1}}|x)=Var({\beta_{1}+\frac{\sum(x_{i}-\bar{x})e_{i}}{\sum(x_{i}-\bar{x})}}|x) Var(β1^x)=Var(β1+(xixˉ)(xixˉ)eix)

V a r ( β 1 ^ ∣ x ) = V a r ( ∑ ( x i − x ˉ ) e i ∣ x ) [ ∑ ( x i − x ˉ ) 2 ] 2 Var(\hat{\beta_{1}}|x)=\frac{Var(\sum(x_{i}-\bar{x})e_{i}|x)}{[\sum(x_{i}-\bar{x})^2]^2} Var(β1^x)=[(xixˉ)2]2Var((xixˉ)eix)

  • 倘若序列无关,那么和的方差即等价于方差的和,假设 V a r ( e i ∣ x ) = σ 2 Var(e_i|x)=\sigma^2 Var(eix)=σ2

KaTeX parse error: Unknown column alignment: * at position 71: … \begin{array}{*̲*lr**} …

  • 序列相关:

σ 2 ^ = ∑ e i 2 n − k − 1 \hat{\sigma^2}=\frac{\sum e_{i}^2}{n-k-1} σ2^=nk1ei2

3.calculate SE in matlab
sqrt(inv(X'*X)*1.6594282)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1026929.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚拟机如何在原有磁盘上扩容

虚拟机未开启状态–菜单栏–虚拟机–快照–拍摄快照–拍摄快照– 菜单栏–虚拟机–快照–快照管理器–点击刚刚的快照1–删除–是– 文件–新建或者打开–硬盘(以本人Win 10.64.3GL为例)–虚拟机设置–硬件– 硬盘(SATA)–磁盘实…

浏览器导出excel

做java web项目时&#xff0c;经常遇到需要在页面上点击导出按钮&#xff0c;然后直浏览器接下载下来一个excel文档。 比如一个List<Person>的集合&#xff0c;需要将每个Person当做一行&#xff0c;输出到excel中去。其中Person实体类如下&#xff1a; import lombok.…

Linux系统使用Docker部署Portainer结合内网穿透实现远程管理容器和镜像

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

LeetCode 1027——最长等差数列

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 假设我们以 f[d][nums[i]]表示以 nums[i] 为结尾元素间距为 d 的等差数列的最大长度&#xff0c;那么&#xff0c;如果 nums[i]-d 也存在于 nums 数组中&#xff0c;则有&#xff1a; f [ d ] [ n u m s [ i ] ] …

GPT-5有望在今年夏季到来

当OpenAI一年前发布了GPT-4 AI模型时&#xff0c;整个行业都被这个能模仿人类交流和写作的技术所震撼&#xff0c;同时也引发了一阵巨大的炒作和恐慌。自那以后&#xff0c;AI界许多人都关心的问题是&#xff1a;GPT-5什么时候出来&#xff1f;在全球各地的采访和媒体露面中&am…

开源大数据集群部署(十七)HADOOP集群配置(二)

作者&#xff1a;櫰木 1 HADOOP集群配置 配置文件workers [roothd1.dtstack.com software]# cd /opt/hadoop/etc/hadoop [roothd1.dtstack.com hadoop]# pwd /opt/hadoop/etc/hadoop [roothd1.dtstack.com hadoop]# cat >> workers <<EOF hd3.dtstack.com hd1.d…

【每日一题】1997. 访问完所有房间的第一天-2024.3.28

题目&#xff1a; 1997. 访问完所有房间的第一天 你需要访问 n 个房间&#xff0c;房间从 0 到 n - 1 编号。同时&#xff0c;每一天都有一个日期编号&#xff0c;从 0 开始&#xff0c;依天数递增。你每天都会访问一个房间。 最开始的第 0 天&#xff0c;你访问 0 号房间。…

基于51单片机的汽车安全带检测控制器Proteus仿真

地址&#xff1a;https://pan.baidu.com/s/1To_ZEiJHBrZnm9ejYHFoPg 提取码&#xff1a;1234 仿真图&#xff1a; 芯片/模块的特点&#xff1a; AT89C52简介&#xff1a; AT89C52是一款经典的8位单片机&#xff0c;是意法半导体&#xff08;STMicroelectronics&#xff09;公…

为响应国家号召,搜维尔科技开启虚拟仿真实验室设备升级改造服务

近日&#xff0c;国务院发布了关于《推动大规模设备更新和消费品以旧换新行动方案》&#xff0c;该通知的发布表现出国家对于科技创新事业的高度重视。各行各业都在积极响应国家号召&#xff0c;加快数字化转型和设备升级与更新步伐。搜维尔科技为响应国家号召&#xff0c;将开…

46.continue语句

目录 一.continue语句 二.视频教程 一.continue语句 continue语句的作用和break语句很像&#xff0c;break语句会跳出当前循环&#xff0c;而continue语句则是跳出本次循环&#xff0c;继续执行下一次循环。 举个例子&#xff1a; #include <stdio.h>void main(void)…

iOS客户端自动化UI自动化airtest+appium从0到1搭建macos+脚本设计demo演示+全网最全最详细保姆级有步骤有图

Android客户端自动化UI自动化airtest从0到1搭建macos脚本设计demo演示全网最全最详细保姆级有步骤有图-CSDN博客 避坑系列-必读&#xff1a; 不要安装iOS-Tagent &#xff0c;安装appium -这2个性质其实是差不多的都是为了安装wda。注意安装appium最新版本&#xff0c;安装完…

Mysql的日志管理,备份与回复

目录 一、Mysql日志管理 1、日志的默认位置及配置文件 2、日志分类 2.1错误日志 2.2通用查询日志 2.3二进制日志 2.4慢查询日志 2.5中继日志 3、日志配置 4、日志查询 4.1查询通用日志是否开启 4.2查询二进制日志是否开启 4.3查看慢查询日志是否开启 4.4查询慢查…

Linux文件系列:磁盘,文件系统,软硬链接

Linux文件系列:磁盘,文件系统,软硬链接 一.磁盘相关知识1.磁盘机械构成2.磁盘物理存储3.磁盘逻辑存储1.LBA地址2.磁盘的分区和分组 二.文件系统和inode1.inode结构体2.文件系统1.Super Block(超级块)2.Group Descriptor Table(块组描述表GDT)3.inode Table4.Data Blocks5.Block…

UE4_旋转节点总结一

一、Roll、Pitch、Yaw Roll 围绕X轴旋转 飞机的翻滚角 Pitch 围绕Y轴旋转 飞机的俯仰角 Yaw 围绕Z轴旋转 飞机的航向角 二、Get Forward Vector理解 测试&#xff1a; 运行&#xff1a; 三、Get Actor Rotation理解 运行效果&#xff1a; 拆分旋转体测试一&a…

春秋云境CVE-2022-24663

简介 远程代码执行漏洞&#xff0c;任何订阅者都可以利用该漏洞发送带有“短代码”参数设置为 PHP Everywhere 的请求&#xff0c;并在站点上执行任意 PHP 代码。P.S. 存在常见用户名低权限用户弱口令 正文 进入首页我们没看到任何有价值的东西&#xff0c;那么就只好去寻找…

Gartner 公布 2024 年八大网络安全预测

近日&#xff0c;Gartner 安全与风险管理峰会在悉尼举行&#xff0c;旨在探讨网络安全的发展前景。 本次峰会&#xff0c;Gartner 公布了 2024 年及以后的八大网络安全预测。 Gartner 研究总监 Deepti Gopal 表示&#xff0c;随着 GenAI 的不断发展&#xff0c;一些长期困扰网…

SQLite数据库文件损坏的可能几种情况(一)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;十三&#xff09; 下一篇&#xff1a;SQLite使用的临时文件&#xff08;二&#xff09; 概述 SQLite数据库具有很强的抗损坏能力。如果应用程序崩溃&#xff0c…

【Linux】详解进程程序替换

一、替换原理 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支)&#xff0c;子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时&#xff0c;该进程的用户空间代码和数据完全被新程序替换&#xff0c;从新程序的启动例程开始执…

It takes two (搜索)

本题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 题目&#xff1a; 样例&#xff1a; 输入 3 4 AAAO AAAA AAAA 输出 NO 思路&#xff1a; 根据题目意思&#xff0c;如果存在的 A 联通不可以成为 矩形&#xff0c;输出 NO&#xff0c;否则输出 YES 这道题看数据范…

高防服务器、高防IP、高防CDN的工作原理是什么

高防IP高防CDN我们先科普一下是什么是高防。“高防”&#xff0c;顾名思义&#xff0c;就犹如网络上加了类似像盾牌一样很高的防御&#xff0c;主要是指IDC领域的IDC机房或者线路有防御DDOS能力。 高防服务器主要是比普通服务器多了防御服务&#xff0c;一般都是在机房出口架设…