【线性代数/计算复杂性理论】积和式的指数时间算法:Ryser算法

news/2024/4/20 15:29:47/文章来源:https://blog.csdn.net/qaqwqaqwq/article/details/129223226

文章目录

  • 一、积和式的定义
  • 二、Ryser算法
  • 三、代码实现

一、积和式的定义

积和式(permanent)是一种和行列式长得很像的矩阵函数。在介绍积和式之前,我们先看看行列式(determinant)的定义。

首先需要引入“排列”(permutation)的概念。对于集合S={1,2,⋯,n}S=\{1,2,\cdots,n\}S={1,2,,n},它的一个排列σ\sigmaσ就是对SSS中元素的一个重排。σ\sigmaσ的第iii个元素记作σi\sigma_iσi。例如,对于n=5n=5n=5,我们令σ={2,5,1,4,3}\sigma=\{2,5,1,4,3\}σ={2,5,1,4,3},则σ3=1\sigma_3=1σ3=1σ5=3\sigma_5=3σ5=3

排列的逆序对就是aaabbb前面但σa>σb\sigma_a>\sigma_bσa>σb的情况。例如σ={2,1,3,5,4}\sigma=\{2,1,3,5,4\}σ={2,1,3,5,4},有两个逆序对:(σ1,σ2)=(2,1)(\sigma_1,\sigma_2)=(2,1)(σ1,σ2)=(2,1)(σ4,σ5)=(5,4)(\sigma_4,\sigma_5)=(5,4)(σ4,σ5)=(5,4)。一个排列σ\sigmaσ中逆序对的个数记作τ(σ)\tau(\sigma)τ(σ)。令sgn(σ)=(−1)τ(σ)\mathrm{sgn}(\sigma)=(-1)^{\tau(\sigma)}sgn(σ)=(1)τ(σ)。对于一个排列σ\sigmaσ,如果你把其中的两个数互换,则sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)会变号。所有nnn个元素的排列的集合记作SnS_nSn。例如,S3={(123),(132),(213),(231),(312),(321)}S_3=\{(1\ 2\ 3),(1\ 3\ 2),(2\ 1\ 3),(2\ 3\ 1),(3\ 1\ 2),(3\ 2\ 1)\}S3={(1 2 3),(1 3 2),(2 1 3),(2 3 1),(3 1 2),(3 2 1)}

给定一个n×nn\times nn×n的矩阵A=(aij)n×nA=(a_{ij})_{n\times n}A=(aij)n×n,它的行列式为det⁡(A)=∑σ∈Sn(sgn(σ)∏i=1nai,σi)\det(A)=\sum\limits_{\sigma\in S_n}\left(\mathrm{sgn}(\sigma)\prod\limits_{i=1}^{n}a_{i,\sigma_{i}}\right) det(A)=σSn(sgn(σ)i=1nai,σi)例如,当n=3n=3n=3时,设A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则det⁡(A)=aei−afh+bfg−bdi+cdh−ceg\det(A)=aei-afh+bfg-bdi+cdh-ceg det(A)=aeiafh+bfgbdi+cdhceg而积和式的定义就是在行列式中把sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)去掉:perm(A)=∑σ∈Sn(∏i=1nai,σi)\mathrm{perm}(A)=\sum\limits_{\sigma\in S_n}\left(\prod\limits_{i=1}^{n}a_{i,\sigma_{i}}\right) perm(A)=σSn(i=1nai,σi)可以理解为:在矩阵中每行选取一个元素,且要求这些元素的列各不相同;将这些元素乘起来,得到一个乘积,积和式就是所有可能的选法对应的乘积之和。例如,当n=3n=3n=3时,设A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则perm(A)=aei+afh+bfg+bdi+cdh+ceg\mathrm{perm}(A)=aei+afh+bfg+bdi+cdh+ceg perm(A)=aei+afh+bfg+bdi+cdh+ceg积和式在量子场论、图论等领域中有应用。

积和式与行列式看起来只是某些项的符号不同,而且积和式看起来更简单了(没有sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)),那是不是比行列式好算呢?答案是:大错特错!行列式可以用高斯消元法在O(n3)O(n^3)O(n3)的时间内算出来,而积和式目前最快的算法需要指数级的时间。事实上,1979年,Leslie G. Valiant证明了积和式的计算是#P\mathsf{\# P}#P完全问题,如果发现积和式有多项式时间的算法,那么将意味着FP=#P\mathsf{FP}=\mathsf{\#P}FP=#P,这是比P=NP\mathsf{P}=\mathsf{NP}P=NP还要强的命题。而大多数计算机科学家认为P≠NP\mathsf{P}\ne\mathsf{NP}P=NP,所以积和式大概率没有多项式时间的算法。我们要介绍的Ryser算法就是O(n2n)O(n 2^n)O(n2n)时间的。

二、Ryser算法

Ryser算法的核心思想就是容斥原理。我们还是先考察一下n=3n=3n=3的情况:令A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则perm(A)=aei+afh+bfg+bdi+cdh+ceg\mathrm{perm}(A)=aei+afh+bfg+bdi+cdh+ceg perm(A)=aei+afh+bfg+bdi+cdh+ceg观察式子T=(a+b+c)(d+e+f)(g+h+i)T=(a+b+c)(d+e+f)(g+h+i)T=(a+b+c)(d+e+f)(g+h+i),你会发现它的展开式中包含积和式的666个项(用蓝色标出):T=adg+adh+adi+aeg+aeh+aei+afg+afh+afi+bdg+bdh+bdi+beg+beh+bei+bfg+bfh+bfi+cdg+cdh+cdi+ceg+ceh+cei+cfg+cfh+cfi\begin{aligned} T&=a d g + a d h + a d i + a e g + a e h + \textcolor{blue}{a e i} + a f g + \textcolor{blue}{a f h} + a f i\\ &+b d g + b d h + \textcolor{blue}{b d i} + b e g + b e h + b e i + \textcolor{blue}{b f g} + b f h + b f i\\ &+c d g + \textcolor{blue}{c d h} + c d i + \textcolor{blue}{c e g} + c e h + c e i + c f g + c f h + c f i \end{aligned}T=adg+adh+adi+aeg+aeh+aei+afg+afh+afi+bdg+bdh+bdi+beg+beh+bei+bfg+bfh+bfi+cdg+cdh+cdi+ceg+ceh+cei+cfg+cfh+cfi于是,我们只需要在TTT的展开式中剔除不属于积和式的项就可以了。不属于积和式的项,也就是选取的某两个元素在同一列的项。这些项的特点是:元素的列组成的集合大小不超过222。比如adhadhadh一项,它只涉及第一和第二列,而没有涉及第三列,所以它不是积和式中的项。同样,cficficfi只涉及第三列,它也不是积和式中的项。我们可以枚举元素的列组成的集合(集合的大小为222),将对应的项剔除出去。

  • 只涉及第一、二列的项:H12=(a+b)(d+e)(g+h)=adg+adh+aeg+aeh+bdg+bdh+beg+behH_{12}=(a+b)(d+e)(g+h)=a d g + a d h + a e g + a e h + b d g + b d h + b e g + b e hH12=(a+b)(d+e)(g+h)=adg+adh+aeg+aeh+bdg+bdh+beg+beh
  • 只涉及第二、三列的项:H23=(b+c)(e+f)(h+i)=beh+bei+bfh+bfi+ceh+cei+cfh+cfiH_{23}=(b+c)(e+f)(h+i)=b e h + b e i + b f h + b f i + c e h + c e i + c f h + c f iH23=(b+c)(e+f)(h+i)=beh+bei+bfh+bfi+ceh+cei+cfh+cfi
  • 只涉及第一、三列的项:H13=(a+c)(d+f)(g+i)=adg+adi+afg+afi+cdg+cdi+cfg+cfiH_{13}=(a+c)(d+f)(g+i)=a d g + a d i + a f g + a f i + c d g + c d i + c f g + c f iH13=(a+c)(d+f)(g+i)=adg+adi+afg+afi+cdg+cdi+cfg+cfi

只需要从TTT中把这些项剔除出去就可以了。但答案是perm(A)=T−H12−H23−H13\mathrm{perm}(A)=T-H_{12}-H_{23}-H_{13}perm(A)=TH12H23H13吗?非也,因为H12H_{12}H12H23H_{23}H23H13H_{13}H13之间还有重叠部分,我们减的时候把重叠部分减了两次,还得加回来。H12H_{12}H12H23H_{23}H23的重叠部分,就是只涉及第二列的项:behbehbehH12H_{12}H12H13H_{13}H13的重叠部分则是只涉及第一列的项:adgadgadg。同理,H23H_{23}H23H13H_{13}H13的重叠部分就是只涉及第三列的项——cficficfi了。

这样,我们得到计算三阶矩阵积和式的公式为:perm(A)=T−H12−H23−H13+adg+beh+cfi=(a+b+c)(d+e+f)(g+h+i)−(a+b)(d+e)(g+h)−(b+c)(e+f)(h+i)−(a+c)(d+f)(g+i)+adg+beh+cfi\begin{aligned} \mathrm{perm}(A)&=T-H_{12}-H_{23}-H_{13}+adg+beh+cfi\\ &=(a+b+c)(d+e+f)(g+h+i)-(a+b)(d+e)(g+h)-(b+c)(e+f)(h+i)-(a+c)(d+f)(g+i)+adg+beh+cfi \end{aligned}perm(A)=TH12H23H13+adg+beh+cfi=(a+b+c)(d+e+f)(g+h+i)(a+b)(d+e)(g+h)(b+c)(e+f)(h+i)(a+c)(d+f)(g+i)+adg+beh+cfi我们可以把这种容斥原理的思想推广到nnn阶矩阵的积和式。计算nnn阶矩阵的积和式的Ryser公式如下:perm(An×n)=(−1)n∑S⊆{1,2,⋯,n}[(−1)∣S∣∏i=1n(∑j∈Saij)]\mathrm{perm}(A_{n\times n})={(-1)}^{n} \sum\limits_{S\subseteq \{1,2,\cdots,n\}}\left[{(-1)}^{|S|}\prod\limits_{i=1}^{n}\left(\sum\limits_{j\in S}a_{ij}\right)\right] perm(An×n)=(1)nS{1,2,,n}(1)Si=1njSaij这个公式可以这么理解:我们把AAA的行和之积展开,里面一定包含我们要求的积和式;然后减去涉及n−1n-1n1列的项,加上涉及n−2n-2n2列的项,减去涉及n−3n-3n3列的项,……式中SSS就是涉及的列的集合,(−1)∣S∣(-1)^{|S|}(1)S用于计算是加还是减;前面的(−1)n{(-1)}^{n}(1)n是修正项,用于解决当nnn是奇数时,S={1,2,⋯,n}S=\{1,2,\cdots,n\}S={1,2,,n}的情况下(−1)∣S∣{(-1)}^{|S|}(1)S是负数的问题。

三、代码实现

理论上讲,如果我们按照格雷码顺序枚举SSS,那么时间复杂度可以降到O(n2n)O(n2^n)O(n2n)。但在这里我们为了方便起见就递归枚举SSS,对于每个SSS,计算各行的、列号为SSS的元素之和的乘积即可。下面给出一个时间复杂度为O(n22n)O(n^2 2^n)O(n22n)的C++实现:

#include <cstdint>typedef std::int64_t num;num recursion(int i, bool* b, int n, num** A)// 枚举S
{if(i == n) // 递归终点,已经得到一个S{num prod = 1;for(int row = 0; row < n; row++){num sum = 0;for(int col = 0; col < n; col++){if(b[col]){sum += A[row][col];}}prod *= sum;}int S_size = 0; // |S|for(int col = 0; col < n; col++){if(b[col]){S_size++;}}if(S_size % 2 == 1) // (-1)^|S|{prod = -prod;}return prod;}num result = 0;b[i] = true; // 选第i列result += recursion(i + 1, b, n, A);b[i] = false; // 不选第i列result += recursion(i + 1, b, n, A);return result;
}num ryser(int n, num** A)// 计算n x n矩阵A的积和式
{bool* b = new bool[n]; // S中是否含有第i列num result = recursion(0, b, n, A);delete []b;if(n % 2 == 1){result = -result; // (-1)^n}return result;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_74430.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

刷题28-有效的变位词

32-有效的变位词 解题思路&#xff1a; 注意变位词的条件&#xff0c;当两个字符串完全相等或者长度不等时&#xff0c;就不是变位词。 把字符串中的字符映射成整型数组&#xff0c;统计每个字符出现的次数 注意数组怎么初始化&#xff1a; int [] s1new int[26]代码如下&a…

Docker buildx 的跨平台编译

docker buildx 默认的 docker build 命令无法完成跨平台构建任务&#xff0c;我们需要为 docker 命令行安装 buildx 插件扩展其功能。buildx 能够使用由 Moby BuildKit 提供的构建镜像额外特性&#xff0c;它能够创建多个 builder 实例&#xff0c;在多个节点并行地执行构建任…

社畜大学生的Python之pandas学习笔记,保姆入门级教学

接上期&#xff0c;上篇介绍了 NumPy&#xff0c;本篇介绍 pandas。 目录 pandas 入门pandas 的数据结构介绍基本功能汇总和计算描述统计处理缺失数据层次化索引 pandas 入门 Pandas 是基于 Numpy 构建的&#xff0c;让以 NumPy 为中心的应用变的更加简单。 Pandas是基于Numpy…

NLP中的对话机器人——预训练基准模型

引言 本文是七月在线《NLP中的对话机器人》的视频笔记&#xff0c;主要介绍FAQ问答型聊天机器人的实现。 场景二 上篇文章中我们解决了给定一个问题和一些回答&#xff0c;从中找到最佳回答的任务。 在场景二中&#xff0c;我们来实现&#xff1a; 给定新问题&#xff0c;从…

基础夯实,字节内部总结240道算法LeetCode刷题笔记,直呼太全

1、什么是算法算法(algorithm&#xff0c;[ˈlɡərɪəm]&#xff0c;计算程序)&#xff1a;就是定义良好的计算过程&#xff0c;他取一个或一组的值为输入&#xff0c;并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤&#xff0c;用来将输入数据转化成输出结…

java spring AOP 完全注解开发

我们先创建一个项目 然后引入java spring aop的依赖 然后 在src下创建目录 我这里 直接就叫 Aop了 下面创建一个User类 参考代码如下 package Aop;import org.springframework.stereotype.Component;Component public class User {public void add(){System.out.println(&qu…

Redis高级-主从复制相关操作

2.1 主从复制简介 2.1.1 高可用 首先我们要理解互联网应用因为其独有的特性我们演化出的三高架构 高并发 应用要提供某一业务要能支持很多客户端同时访问的能力&#xff0c;我们称为并发&#xff0c;高并发意思就很明确了 高性能 性能带给我们最直观的感受就是&#xff1a;速…

Java EE|TCP/IP协议栈之应用层协议DNS详解

文章目录一、对DNS的感性认识简介特点一些常见疑问二、DNSDNS域名结构域名的分级三、域名服务器四、域名解析过程参考一、对DNS的感性认识 简介 DNS&#xff0c;即Domain Name System,是域名系统的简称。它是Internet上解决网上机器命名的一种系统。 TCP/IP中的IP地址是由四…

【蓝桥集训】第七天并查集

作者&#xff1a;指针不指南吗 专栏&#xff1a;Acwing 蓝桥集训每日一题 &#x1f43e;或许会很慢&#xff0c;但是不可以停下来&#x1f43e; 文章目录1.亲戚2.合并集合3.连通块中点的数量有关并查集的知识学习可以移步至—— 【算法】——并查集1.亲戚 或许你并不知道&#…

c语言tips-大端小端存储介绍和使用union判断大小端

1. 大小端介绍 大端&#xff08;Big Endian&#xff09;和小端&#xff08;Little Endian&#xff09;是两种CPU或者计算机系统存储数据的方式。 在大端系统中&#xff0c;数据的高位字节&#xff08;MSB&#xff09;存储在内存地址的低位&#xff0c;低位字节&#xff08;LSB…

【C++】C++入门(下)

引用 什么是引用&#xff1f;   引用是给一个已经存在的变量取一个别名&#xff0c;在语法上并不会给这个别名开一个空间&#xff0c;它和她引用的变量共用一个空间。但是实际上引用也是开了一块空间的&#xff0c;用来存放引用名。引用是按照指针的方式来实现的。引用语法&…

《分布式技术原理与算法解析》学习笔记Day23

分布式数据复制 我们在进行分布式数据存储设计时&#xff0c;通常会考虑对数据进行备份&#xff0c;以提高数据的可用性和可靠性&#xff0c;“数据复制技术”就是实现数据备份的关键技术。 什么是数据复制技术&#xff1f; 在分布式数据库系统中&#xff0c;通常会设置主备…

华为OD机试用Python实现 -【统一限载货物数最小值】(2023-Q1 新题)

华为OD机试题 华为OD机试300题大纲统一限载货物数最小值题目描述输入描述输出描述说明示例一输入输出说明示例二输入输出说明Python 代码实现算法逻辑华为OD机试300题大纲 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查…

python爬虫常见错误

python爬虫常见错误前言python常见错误1. AttributeError: WebDriver object has no attribute find_element_by_id1. 问题描述2. 解决办法2. selenium&#xff1a;DeprecationWarning: executable_path has been deprecated, please pass in1. 问题描述2. 解决办法3. 下载了包…

k8s-资源限制-探针检查

文章目录一、资源限制1、资源限制的使用2、reuqest资源&#xff08;请求&#xff09;和limit资源&#xff08;约束&#xff09;3、Pod和容器的资源请求和限制4、官方文档示例5、资源限制实操5.1 编写yaml资源配置清单5.2 释放内存&#xff08;node节点&#xff0c;以node01为例…

《程序员思维修炼》速读笔记

文章目录书籍信息概览绪论从新手到专家的历程认识大脑利用右脑调试大脑主动学习积累经验控制注意力超越专家图解书籍信息 书名&#xff1a;《程序员思维修炼&#xff08;修订版&#xff09;》 作者&#xff1a;[美] Andy Hunt 概览 绪论 再提“实用”关注情境所有人都关注这…

Flutter3引用原生播放器-IOS(Swift)篇

前言由于Flutter项目中需要使用到播放器功能&#xff0c;因此对flutter中各种播放器解决方案进行了一番研究和比对&#xff0c;最后决定还是自己通过Plugin的方法去引用原生播放器符合自己的需求&#xff0c;本篇文章会对各种解决方案做一个简单的比较&#xff0c;以及讲解一下…

线材-电子线载流能力

今天来讲的是关于电子线的一个小知识&#xff0c;可能只做板子的工程师遇到此方面的问题会比较少&#xff0c;做整机的工程师则必然会遇到此方面问题&#xff0c;那就是线材问题。 下面主要说下电子线的过电流能力。&#xff08;文末有工具下载&#xff09;电子线&#xff08;h…

[11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳

升级学校云系统我们学校要根据目前学生互联网在线学习、教师教学资源电子化、教学评价过程化精细化的需求&#xff0c;计划升级为云教学系统。请同学们根据学校发展实际考虑云交付模型包含哪些&#xff1f;云部署采用什么模型最合适&#xff1f;请具体说明。9月3日买电脑还是租…

@Value注解的使用(可用于配置文件)

基本概念Value&#xff1a;注入配置文件中的内容。只要是spring的注解类&#xff08;service,compotent, dao等&#xff09;中都可以。Component&#xff1a;泛指组件&#xff0c;当组件不好归类的时候&#xff0c;可以使用这个注解进行标注。AutoWired&#xff1a;自动导入依赖…