(五)物质导数与空间时间导数

news/2024/4/19 1:07:02/文章来源:https://blog.csdn.net/qq_51453181/article/details/127700340

1. 物质导数与空间时间导数及二者的联系

考虑运动变形过程中代表性物质点的物理量 Φ\bold\PhiΦ(张量) 随时间的变化率

  • 在物质描述中,Φ\bold\PhiΦ(X⃗,t)(\vec{X},t)(X,t) 为自变量;
  • 在空间描述中,Φ\bold\PhiΦ(x⃗,t)(\vec{x},t)(x,t) 为自变量。

物理量 Φ\bold \PhiΦ 随某一固定的物质点一起运动的时间变化率(称作:物质导数)可写作:
DΦDt=(∂Φ(X⃗,t)∂t)∣X⃗≜Φ∙\dfrac{D\bold \Phi}{Dt} =\left. \left(\frac{\partial \bold\Phi(\vec{X},t)}{\partial t}\right)\right|_{\vec X} \triangleq \overset{\bullet}{\bold\Phi}DtDΦ=(tΦ(X,t))XΦ
物理量 Φ\bold \PhiΦ 在某一固定的空间坐标上的时间变化率(称作:空间时间导数/局部导数)可写作:
(∂Φ(x⃗,t)∂t)∣x⃗≜Φ′\left. \left(\frac{\partial \bold\Phi(\vec{x},t)}{\partial t}\right)\right|_{\vec x} \triangleq \bold\Phi'(tΦ(x,t))xΦ

根据复合函数的求导法则可推出:
Φ∙={∂Φ[x⃗(X⃗,t),t]∂t}∣X⃗=(∂Φ∂t)∣x⃗+(∂Φ∂xr)(∂xr∂t)∣X⃗=Φ′+(∂Φ∂xr⊗g⃗r)⋅(g⃗s∂xs∂t)∣X⃗=Φ′+(Φ▽)⋅(∂x⃗∂t)∣X⃗=Φ′+(Φ▽)⋅(∂u⃗∂t)=Φ′+(Φ▽)⋅v⃗=Φ′+v⃗⋅(▽Φ)\begin{aligned} & \overset{\bullet}{\bold\Phi} =\left. \left\{\frac{\partial \bold\Phi[\vec{x}(\vec{X},t),t]}{\partial t}\right\}\right|_{\vec X} \\\\ &\quad=\left.\left(\dfrac{\partial\bold\Phi}{\partial t}\right)\right|_{\vec{x}}+\left(\dfrac{\partial\bold\Phi}{\partial {x}^r}\right)\left.\left(\dfrac{\partial x^r}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\dfrac{\partial\bold\Phi}{\partial {x}^r}\otimes\vec{g}\ ^r\right)\cdot\left.\left(\vec{g}_s\dfrac{\partial x^s}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\left.\left(\dfrac{\partial\vec x}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\left(\dfrac{\partial\vec u}{\partial t}\right)\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\vec{v}\\\\ &\quad=\bold\Phi'+\vec{v}\cdot\left(\triangledown\bold\Phi\right) \end{aligned}Φ={tΦ[x(X,t),t]}X=(tΦ)x+(xrΦ)(txr)X=Φ+(xrΦg r)(gstxs)X=Φ+(Φ)(tx)X=Φ+(Φ)(tu)=Φ+(Φ)v=Φ+v(Φ)

2. 空间坐标系相关量的物质导数

2.1. 空间坐标系基矢的物质导数

随时间变化,某一固定物质点将映射至空间坐标系中的不同位置。因此,“空间坐标系基矢的物质导数”是指:某一物质点所在处的基矢变化率。故
g⃗i∙=(g⃗i)′+v⃗⋅▽g⃗i=v⃗⋅▽g⃗i=vj∂g⃗i∂xj=vjΓijkg⃗k=vjΓij,kg⃗k\overset{\bullet}{\vec{g}_i} =(\vec{g}_i)'+\vec{v}\cdot\triangledown\vec{g}_i =\vec{v}\cdot\triangledown\vec{g}_i =v^j\dfrac{\partial \vec{g}_i}{\partial x^j} =v^j\Gamma_{ij}^k\vec{g}_k =v^j\Gamma_{ij,k}\vec{g}^kgi=(gi)+vgi=vgi=vjxjgi=vjΓijkgk=vjΓij,kgk
式中,Γijk、Γij,k\Gamma_{ij}^k、\Gamma_{ij,k}ΓijkΓij,k 分别为空间坐标系的第二类、第一类 Christoffel 符号。又由于
DDt(g⃗i⋅g⃗j)=g⃗i∙⋅g⃗j+g⃗i⋅g⃗j∙=0⟹g⃗i⋅g⃗j∙=−g⃗i∙⋅g⃗j\dfrac{D}{Dt}(\vec{g}_i\cdot\vec{g}^j) =\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^j+\vec{g}_i\cdot\overset{\bullet}{\vec{g}^j} =0 \Longrightarrow \vec{g}_i\cdot\overset{\bullet}{\vec{g}^j}=-\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^jDtD(gigj)=gigj+gigj=0gigj=gigj
g⃗j∙=βijg⃗i\overset{\bullet}{\vec{g}^j}=\beta^j_i\vec{g}^igj=βijgi ,那么:
g⃗i⋅βkjg⃗k=βij=−g⃗i∙⋅g⃗j=−vkΓikj\vec{g}_i\cdot\beta^j_k\vec{g}^k =\beta^j_i =-\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^j =-v^k\Gamma^j_{ik}giβkjgk=βij=gigj=vkΓikj
故,
g⃗j∙=−vkΓikjg⃗i\overset{\bullet}{\vec{g}^j}=-v^k\Gamma^j_{ik}\vec{g}^igj=vkΓikjgi

2.2. 空间坐标系协变基矢混合积的 g\sqrt{g}g 的物质导数

由空间坐标系基矢的物质导数可知:
gij∙=g⃗i∙⋅g⃗j+g⃗i⋅g⃗j∙=vr(Γirkgkj+Γjrkgki)=vr(Γir,j+Γjr,i)\overset{\bullet}{g_{ij}} =\overset{\bullet}{\vec{g}_i}\cdot\vec{g}_j+\vec{g}_i\cdot\overset{\bullet}{\vec{g}_j} =v^r(\Gamma^k_{ir}g_{kj}+\Gamma^k_{jr}g_{ki}) =v^r(\Gamma_{ir,j}+\Gamma_{jr,i})gij=gigj+gigj=vr(Γirkgkj+Γjrkgki)=vr(Γir,j+Γjr,i)
由于,
1det([A])[A∗]=[A]−1\dfrac{1}{det([A])}[A^*]=[A]^{-1}det([A])1[A]=[A]1
其中,[A∗][A^*][A][A][A][A] 的伴随矩阵。则
1g∂g∂gji=gij,g=det(gij)\dfrac{1}{g}\dfrac{\partial g}{\partial g_{ji}}=g^{ij},g=det(g_{ij})g1gjig=gijg=det(gij)
故,det(gij)det(g_{ij})det(gij) 的物质导数为:
g∙=∂g∂gjigji∙=ggijgji∙=gvr(Γiri+Γjrj)=2gvrΓiri\overset{\bullet}{g} =\dfrac{\partial g}{\partial g_{ji}}\overset{\bullet}{g_{ji}} =gg^{ij}\overset{\bullet}{g_{ji}} =gv^r(\Gamma_{ir}^i+\Gamma_{jr}^j) =2gv^r\Gamma_{ir}^ig=gjiggji=ggijgji=gvr(Γiri+Γjrj)=2gvrΓiri
式中,Γiri\Gamma_{ir}^iΓiri 为空间坐标系的第二类Christoffel 符号。进一步:
g∙=gvrΓiri\overset{\bullet}{\sqrt{g}}=\sqrt gv^r\Gamma_{ir}^ig=gvrΓiri
上式也可利用第二类Christoffel符号与协变基矢的混合积 g\sqrt{g}g 的关系物质导数和局部导数的关系得到:
g∙=v⃗⋅(▽g)=vi∂g∂xi=gvrΓiri\overset{\bullet}{\sqrt{g}} =\vec{v}\cdot(\triangledown\sqrt{g}) =v^i\dfrac{\partial \sqrt{g}}{\partial x^i} =\sqrt gv^r\Gamma_{ir}^ig=v(g)=vixig=gvrΓiri

3. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 相关量的物质导数

3.1. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 基矢的物质导数

随时间的变化,特定的物质点在随体坐标系 {XA,t}\{X^A,t\}{XA,t} 中的基矢不断改变。其协变基矢的变化率可写作:
C⃗A∙=[∂∂t(∂x⃗∂XA)]∣X⃗=[∂∂XA(∂x⃗∂t)]∣X⃗=∂∂XA(∂u⃗∂t)=∂v⃗∂XA=vB∣∣AC⃗B=∂v⃗∂xi∂xi∂XA=x,Ai∂v⃗∂xi=x,Aivj∣ig⃗j\begin{aligned} &\overset{\bullet}{\vec{C}_A} =\left.\left[\dfrac{\partial}{\partial t}\left(\dfrac{\partial \vec{x}}{\partial X^A}\right)\right]\right|_{\vec{X}} =\left.\left[\dfrac{\partial}{\partial X^A}\left(\dfrac{\partial \vec{x}}{\partial t}\right)\right]\right|_{\vec{X}} \\\ \\ &\quad\ =\dfrac{\partial}{\partial X^A}\left(\dfrac{\partial \vec{u}}{\partial t}\right) =\dfrac{\partial\vec{v}}{\partial X^A} =v^B||_A\vec{C}_B \\\ \\ &\quad\ =\dfrac{\partial\vec{v}}{\partial x^i}\dfrac{\partial x^i}{\partial X^A} =x^i_{,A}\dfrac{\partial\vec{v}}{\partial x^i} =x^i_{,A}v^j|_i\vec{g}_j \end{aligned}  CA=[t(XAx)]X=[XA(tx)]X =XA(tu)=XAv=vBACB =xivXAxi=x,Aixiv=x,Aivjigj
同理可知
C⃗A∙∙=∂a⃗∂XA=aB∣∣AC⃗B\overset{\bullet\bullet}{\vec{C}_A} =\dfrac{\partial\vec{a}}{\partial X^A} =a^B||_A\vec{C}_BCA∙∙=XAa=aBACB

DC⃗A⋅C⃗BDt=C⃗A∙⋅C⃗B+C⃗A⋅C⃗B∙=0\dfrac{D{\vec{C}_A\cdot\vec{C}^B}}{Dt} =\overset{\bullet}{\vec{C}_A}\cdot\vec{C}^B+{\vec{C}_A}\cdot\overset{\bullet}{\vec{C}^B} =0DtDCACB=CACB+CACB=0

C⃗A∙=−(C⃗B∙⋅C⃗A)C⃗B=−vA∣∣BC⃗B=−X,jAvj∣ig⃗i\overset{\bullet}{\vec{C}^A} =-(\overset{\bullet}{\vec{C}_B}\cdot\vec{C}^A)\vec{C}^B =-v^A||_B\vec{C}^B =-X^A_{,\ j}v^j|_i\vec{g}^iCA=(CBCA)CB=vABCB=X, jAvjigi

3.2. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 协变基矢混合积的 C\sqrt{C}C 的物质导数

C∙AB=C⃗∙A⋅C⃗B+C⃗A⋅C⃗∙B=vB∣∣A+vA∣∣B\overset{\bullet}{C}_{AB} =\overset{\bullet}{\vec C}_{A}\cdot{\vec C}_{B}+\vec{C}_A\cdot\overset{\bullet}{\vec C}_{B} =v_B||_A+v_A||_BCAB=CACB+CACB=vBA+vAB

1C∂C∂CBA=C−1AB,C=det(CAB)\dfrac{1}{C}\dfrac{\partial C}{\partial C_{BA}}=\overset{-1}{C}\ ^{AB},C=det(C_{AB})C1CBAC=C1 ABC=det(CAB)

C∙=∂C∂CBAC∙AB=CC−1ABC∙AB=C(vA∣∣A+vB∣∣B)=2CvA∣∣A\overset{\bullet}{C} =\dfrac{\partial C}{\partial C_{BA}}\overset{\bullet}{C}_{AB} =C\overset{-1}{C}\ ^{AB}\overset{\bullet}{C}_{AB} =C(v^A||_A+v^B||_B) =2Cv^A||_AC=CBACCAB=CC1 ABCAB=C(vAA+vBB)=2CvAA
进一步知:
C∙=12CC∙=CvA∣∣A\overset{\bullet}{\sqrt C} =\dfrac{1}{2\sqrt C}\overset{\bullet}{C} =\sqrt Cv^A||_AC=2C1C=CvAA

3.3. J\mathscr{J}J 的物质导数

由于,
J=det(F)=CG\mathscr{J}=det(\bold F)=\sqrt{\dfrac{C}{G}}J=det(F)=GC
故,
J∙=C∙G=CGvA∣∣A=JvA∣∣A=J▽⋅v⃗\overset{\bullet}{\mathscr{J}} ={\dfrac{\overset{\bullet}{\sqrt C}}{\sqrt G}} =\dfrac{\sqrt C}{\sqrt G}v^A||_A =\mathscr{J}v^A||_A =\mathscr{J}\triangledown\cdot\vec{v}J=GC=GCvAA=JvAA=Jv

4. 任意张量在空间坐标系与随体坐标系 {XA,t}\{X^A,t\}{XA,t} 中的物质导数

以三阶张量为例:
Φ=Φ∙∙kijg⃗i⊗g⃗j⊗g⃗k=Φ∙∙MABC⃗A⊗C⃗B⊗C⃗M\bold\Phi =\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k =\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^MΦ=Φ∙∙kij gigjgk=Φ∙∙MAB CACBCM

Φ∙=Φ∙∙∙MABC⃗A⊗C⃗B⊗C⃗M+Φ∙∙MABC⃗A∙⊗C⃗B⊗C⃗M+Φ∙∙MABC⃗A⊗C⃗B∙⊗C⃗M+Φ∙∙MABC⃗A⊗C⃗B⊗C⃗∙M=(Φ∙∙∙MAB+Φ∙∙MNBvA∣∣N+Φ∙∙MANvB∣∣N−Φ∙∙NABvN∣∣M)C⃗A⊗C⃗B⊗C⃗M\begin{aligned} &\overset{\bullet}{\bold\Phi} =\overset{\bullet}{\varPhi}\ ^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \overset{\bullet}{\vec{C}_A}\otimes\vec{C}_B\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\overset{\bullet}{\vec{C}_B}\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\overset{\bullet}{\vec{C}}\ ^M \\\\ &\ \ \ =(\overset{\bullet}{\varPhi}\ ^{AB}_{\bullet\bullet M}+\varPhi^{NB}_{\bullet\bullet M}\ v^A||_N+\varPhi^{AN}_{\bullet\bullet M}\ v^B||_N-\varPhi^{AB}_{\bullet\bullet N}\ v^N||_M)\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^M \end{aligned}Φ=Φ ∙∙MAB CACBCM+Φ∙∙MAB CACBCM+Φ∙∙MAB CACBCM+Φ∙∙MAB CACBC M   =(Φ ∙∙MAB+Φ∙∙MNB vAN+Φ∙∙MAN vBNΦ∙∙NAB vNM) CACBCM

Φ∙=Φ∙∙∙kijg⃗i⊗g⃗j⊗g⃗k+Φ∙∙kijg⃗∙i⊗g⃗j⊗g⃗k+Φ∙∙kijg⃗i⊗g⃗∙j⊗g⃗k+Φ∙∙kijg⃗i⊗g⃗j⊗g⃗∙k=(Φ∙∙∙kij+Φ∙∙ksjvrΓrsi+Φ∙∙kisvrΓrsj−Φ∙∙sijvrΓrks)g⃗i⊗g⃗j⊗g⃗k=[(Φ∙∙kij)′+(vrΦ∙∙k,rij+Φ∙∙ksjvrΓrsi+Φ∙∙kisvrΓrsj−Φ∙∙sijvrΓrks)]g⃗i⊗g⃗j⊗g⃗k=[(Φ∙∙kij)′+vrΦ∙∙kij∣r)]g⃗i⊗g⃗j⊗g⃗k=Φ′+v⃗⋅▽Φ\begin{aligned} &\overset{\bullet}{\bold\Phi} =\overset{\bullet}{\varPhi}\ ^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \overset{\bullet}{\vec{g}}_i\otimes\vec{g}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\overset{\bullet}{\vec{g}}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\overset{\bullet}{\vec{g}}\ ^k \\\\ &\ \ \ =(\overset{\bullet}{\varPhi}\ ^{ij}_{\bullet\bullet k}+{\varPhi}\ ^{sj}_{\bullet\bullet k}v^r\Gamma^i_{rs}+{\varPhi}\ ^{is}_{\bullet\bullet k}v^r\Gamma^j_{rs}-{\varPhi}\ ^{ij}_{\bullet\bullet s}v^r\Gamma^s_{rk})\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =[({\varPhi}\ ^{ij}_{\bullet\bullet k})'+(v^r{\varPhi}\ ^{ij}_{\bullet\bullet k,r}+{\varPhi}\ ^{sj}_{\bullet\bullet k}v^r\Gamma^i_{rs}+{\varPhi}\ ^{is}_{\bullet\bullet k}v^r\Gamma^j_{rs}-{\varPhi}\ ^{ij}_{\bullet\bullet s}v^r\Gamma^s_{rk})]\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =[({\varPhi}\ ^{ij}_{\bullet\bullet k})'+v^r{\varPhi}\ ^{ij}_{\bullet\bullet k}|_r)]\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =\bold\Phi'+\vec{v}\cdot\triangledown\bold\Phi \end{aligned}Φ=Φ ∙∙kij gigjgk+Φ∙∙kij gigjgk+Φ∙∙kij gigjgk+Φ∙∙kij gigjg k   =(Φ ∙∙kij+Φ ∙∙ksjvrΓrsi+Φ ∙∙kisvrΓrsjΦ ∙∙sijvrΓrks) gigjgk   =[(Φ ∙∙kij)+(vrΦ ∙∙k,rij+Φ ∙∙ksjvrΓrsi+Φ ∙∙kisvrΓrsjΦ ∙∙sijvrΓrks)] gigjgk   =[(Φ ∙∙kij)+vrΦ ∙∙kijr)] gigjgk   =Φ+vΦ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_73989.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis快速开发

查询user表中的所有数据 步骤: 创建user表 打开Navicat,新建查询,将下面SQL代码复制粘贴并执行: create database mybatis; use mybatis;drop table if exists tb_user;create table tb_user(id int primary key auto_incremen…

Vue3电商项目实战-商品详情模块6【17-商品详情-标签页组件、18-商品详情-热榜组件、19-商品详情-详情组件、20-商品详情-注意事项组件】

文章目录17-商品详情-标签页组件18-商品详情-热榜组件19-商品详情-详情组件20-商品详情-注意事项组件17-商品详情-标签页组件 目的:实现商品详情组件和商品评价组件的切换 大致步骤: 完成基础的tab的导航布局完成tab标签页的切换样式效果使用动态组件完…

【Rust 日报】2023-2-24 Dioxus 0.3 发布,巨大的更新

ascii-d - 画ASCII示意图的工具Rust写的画ASCII示意图的工具。支持各大平台。程序员的最爱啊。https://github.com/huytd/ascii-d/raw/master/_meta/toolbar-final.gifDioxus 0.3 发布,巨大的更新Dioxus 是新出的与 Yew 类似的 Rust Web 前端框架(为什么…

【华为OD机试模拟题】用 C++ 实现 - 最大相连男生数(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 货币单位换算(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 选座位(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 停车场最大距离(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 重组字符串(2023.Q1) 【华为OD机试模…

Java-多线程-增强篇-锁强化第3篇

Java集合框架中的锁 今天我们继续来学习锁 字符串操作中的锁 String是线程安全的,因为使用final修饰Stringbuilder 是线程不安全的,其方法没有使用synchronized修饰StringBuffer 是线程安全的,其方法使用synchronized修饰 List集合中的锁 …

内核并发消杀器(KCSAN)技术分析

一、KCSAN介绍KCSAN(Kernel Concurrency Sanitizer)是一种动态竞态检测器,它依赖于编译时插装,并使用基于观察点的采样方法来检测竞态,其主要目的是检测数据竞争。KCSAN是一种检测LKMM(Linux内核内存一致性模型)定义的数据竞争(data race)的工…

【网络原理8】HTTP请求篇

在上一篇文章当中,我们也提到了什么是HTTP。 每一个HTTP请求,都会对应一个HTTP响应。 下面这一篇文章,将聊一下HTTP请求的一些内容 目录 一、URL 第一部分:协议名称 第二部分:认证信息(新的版本已经没有了) 第三部分&#xf…

【数通网络交换基础梳理1】二层交换机、以太网帧、MAC地址详解及数据帧转发原理(爆炸细)

一、网络模型 万年不变,先从模型结构分析,现在大家熟知的网络模型有两种。第一种是,OSI七层模型,第二种是TCP/IP模型。在实际运用中,参考更多的是TCP/IP模型。 OSI七层模型 TCP/IP模型 不需要全部理解,…

Spring MVC 源码- HandlerExceptionResolver 组件

HandlerExceptionResolver 组件HandlerExceptionResolver 组件,处理器异常解析器,将处理器( handler )执行时发生的异常(也就是处理请求,执行方法的过程中)解析(转换)成对…

Python变量的定义和使用

定义:变量就是计算机内存中存储某些数据的位置的名称 形象理解变量就是一个存放东西的容器,该容器的名字就叫做变量,容器存放的东西就是变量的值 变量的组成: 标识:标识对象所储存的内存地址,使用内置函数i…

六千字让你明白什么是数字孪生?

文章目录1. 背景2. 数字孪生基础2.1 概念2.2 价值3. 技术生态3.1 技术体系3.2 核心技术3.2.1 多领域、多尺度融合建模3.2.2 数据驱动与物理模型融合的状态评估3.2.3 数据采集和传输3.2.4 全生命周期数据管理3.2.5 虚拟现实呈现3.2.6 高性能计算3.3 建设3.3.1 重点3.3.1.1 数字孪…

SEATA是什么?它的四种分布式事务模式

一、SEATA是什么? Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。 在继续学习使用SEATA之前,对s…

数据结构栈的经典OJ题【leetcode最小栈问题大剖析】【leetcode有效的括号问题大剖析】

目录 0.前言 1.最小栈 1.1 原题展示 1.2 思路分析 1.2.1 场景引入 1.2.2 思路 1.3 代码实现 1.3.1 最小栈的删除 1.3.2 最小栈的插入 1.3.3 获取栈顶元素 1.3.4 获取当前栈的最小值 2. 有效的括号 0.前言 本篇博客已经把两个关于栈的OJ题分块,可以根据目…

【华为OD机试模拟题】用 C++ 实现 - 分糖果(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…

Jina 3.14 版本发布!支持独立部署Executor

Jina 是一个 MLOps 框架,赋能开发者在云上构建多模态、跨模态的应用程序。Jina 能够将 PoC 提升为生产就绪服务。基础设施的复杂性交给 Jina,开发者能够直接轻松使用高级解决方案和云原生技术。🌟 GitHubhttps://github.com/jina-ai/jina/rel…

基于博客系统的测试用例

登陆界面博客预览页博客详情页博客编辑页

【华为OD机试模拟题】用 C++ 实现 - 时间格式化(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…

【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 分积木(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 吃火锅(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - RSA 加密算法(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 构成的正方形数量(2023.Q1) 【华为OD机试模拟…

MATLAB绘制雷达图/蜘蛛图

雷达图/蜘蛛图 1 方法一 函数来源为MATLAB | 如何使用MATLAB绘制雷达图(蜘蛛图) 1.1 调用函数 1.2 案例 2 方法二 函数来源为MATLAB帮助-spider_plot 2.1 调用函数 语法(Syntax): spider_plot(P)spider_plot(P, Name, Value, ...)h …

内网穿透常用方法系列总结

前言在内网渗透时,一个WebShell或CobaltStrike、Metasploit上线等,只是开端,更多是要内网横向移动,扩大战果,打到核心区域。但后渗透的前提是需要搭建一条通向内网的“专属通道”,才能进一步攻击。可实战中…