【Java】线程使用方式

news/2024/4/16 12:05:23/文章来源:https://blog.csdn.net/qq_44544908/article/details/129193135

(1)继承 Tread 类

  1. 继承Thread类,创建一个新的线程类
  2. 重写run()方法,将需要并发执行的业务代码编写在run()方法中
//继承Thread来创建一个线程类
class MyThread extends Thread{@Overridepublic void run(){System.out.println("hello Thread");}public static void main(String[] args) {Thread t=new MyThread();//调用start方法启动线程t.start();}
}

(2)实现 Runnable 接口

将需要异步执行的业务逻辑代码写在Runnable实现类的run()方法中,再将Runnable实例作为target执行目标传入Thread实例,其完整步骤如下:

  1. 定义一个新类实现Runnable接口
  2. 实现Runnable接口中的run()抽象方法,将线程代码逻辑写在该run()实现方法中
  3. 通过Thread类创建线程对象,将Runnable实例作为实际参数传递给Thread类的构造器,由Thread构造器将该Runnable实例赋值给自己的target执行目标属性
  4. 调用Thread实例的start()方法启动线程
  5. 线程启动之后,线程的run()方法将被JVM执行,该run()方法将调用target属性的run()方法,从而完成Runnable实现类中业务代码逻辑的并发执行
//实现Runnable接口。
class MyRunnable implements  Runnable{@Overridepublic void run(){System.out.println("hello Thread");}public static void main(String[] args) {Thread t=new Thread(new MyRunnable());t.start();}
}

缺点

  • 创建的类不是线程类,而是线程的target执行目标类,需要将其实例作为参数传入线程类的构造器,才能创建真正的线程
  • 访问当前线程的属性,不能直接访问Thread的实例方法,必须通过Thread.currentThread()获取当前线程实例

优点

  • 可以避免由于Java单继承带来的局限性。如果异步逻辑所在类已经继承了一个基类,就没有办法再继承Thread类。比如,当一个Dog类继承了Pet类,再要继承Thread类就不行了。所以在已经存在继承关系的情况下,只能使用实现Runnable接口的方式。
  • 逻辑和数据更好分离。通过实现Runnable接口的方法创建多线程更加适合同一个资源被多段业务逻辑并行处理的场景。在同一个资源被多个线程逻辑异步、并行处理的场景中,通过实现Runnable接口的方式设计多个target执行目标类可以更加方便、清晰地将执行逻辑和数据存储分离,更好地体现了面向对象的设计思想。

继承Thread和实现Runnable区别

  • 继承Thread类用于多个线程并发完成各自的任务,访问各自的数据资源
  • 实现Runnable接口用于多个线程并发完成同一个任务,访问同一份数据资源,数据共享资源需要使用原子类型或者进行线程同步控制

(3)实现 Callable 接口:带有返回值

使用CallableFutureTask创建线程的步骤如下:

  1. 创建一个Callable接口的实现类,并实现其call()方法,编写异步执行的具体逻辑,可以有返回值
  2. 使用Callable实现类的实例构造一个FutureTask实例
  3. 使用FutrueTask实例作为Thread构造器的target入参,构造新的Thread线程实例
  4. 调用Thread实例的start()方法启动线程,启动新线程的run()方法并发执行
  5. 调用FutureTask对象的get()方法阻塞性地获取并发线程执行结果
import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;public class UseCallable implements Callable<Integer> {@Override//call方法可以抛异常,像线程里面的run方法最多只能在run方法内trycatchpublic Integer call() throws Exception {//所需要实现的功能代码System.out.print("hello Thread");return  1;}public static void main(String[] args) {UseCallable useCallable = new UseCallable();FutureTask<Integer> futureTask = new FutureTask<>(useCallable);new Thread(futureTask).start();try {System.out.print(futureTask.get());}catch(Exception e){}}
}

Callable与Runnable区别

  • Runnable的唯一抽象方法run()没有返回值,也没受检查异常的异常声明,Callable接口的call()有返回值,并且声明了受检查异常,功能更强
  • 使用Runnable创建多线程,实现Runnable接口的实例作为Thread线程实例的target来使用
  • 使用Callable创建多线程,使用RunnableFuture作为Thread线程实例的target实例和获取异步执行的结果,其实现类是FutureTask

(4)线程池创建线程

前面几种方法创建的Thread实例在执行完成之后是不可复用的,实际工作中需要对已创建好的线程实例进行复用,需要用到线程池。
ExecutorServiceJava提供的一个线程池接口,每次在异步执行target目标任务的时候,可以通过ExecutorService线程池实例去提交或者执行。ExecutorService实例负责对池中的线程进行管理和调度,并且可以有效控制最大并发线程数,提高系统资源的使用率,同时提供定时执行、定频执行、单线程、并发数控制等功能。

import java.util.concurrent.*;public class MultiThread {private static final int MAX_TURN = 5;private static final int COMPUTE_TIMES = 100000000;private static ExecutorService pool = Executors.newFixedThreadPool(3);static class RunnableTask implements Runnable {@Overridepublic void run() {for (int i = 0; i < MAX_TURN; i++) {System.out.println("多线程执行,第:" + i + "次执行");}}}static class CallableTask implements Callable<Long> {@Overridepublic Long call() throws Exception {long startTime = System.currentTimeMillis();System.out.println("多线程执行,开始时间为:" + startTime);Thread.sleep(1000);for (int i = 0; i < COMPUTE_TIMES; i++) {int j = i * 10000;}long endTime = System.currentTimeMillis();long used = endTime - startTime;System.out.println("多线程执行结束,用时:" + used);return used;}}public static void main(String[] args) throws ExecutionException, InterruptedException {pool.execute(new RunnableTask());pool.execute(new Runnable() {@Overridepublic void run() {for (int i = 0; i < MAX_TURN; i++) {System.out.println("多线程执行,直接实现Runnable");}}});Future<Long> future = pool.submit(new CallableTask());Long result = future.get();System.out.println("异步执行多线程结果为:" + result);}
}

注意:实际开发中不会使用Executors创建线程池,而是使用ThreadPoolExecutor的构造方法

execute()与submit()区别

接收的参数不一样

submit()可以接收两种入参:无返回值的Runnable类型的target执行目标实例和有返回值的Callable类型的target执行目标实例;
execute()只接收无返回值的target执行目标实例或者无返回值的Thread实例。

submit()有返回值,execute()没有返回值

submit()方法在提交异步target执行目标之后会返回Future异步任务实例,以便对target的异步执行过程进行控制,比如取消执行、获取结果等。
execute()没有任何返回,target执行目标实例在执行之后没有办法对其异步执行过程进行控制,只能任其执行,直到其执行结束。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_73690.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「RISC-V Arch」SBI 规范解读(上)

术语 SBI&#xff0c;Supervisor Binary Interface&#xff0c;管理二进制接口 U-Mode&#xff0c;User mode&#xff0c;用户模式 S-Mode&#xff0c;Supervisor mode&#xff0c;监督模式 VS-Mode&#xff0c;Virtualization Supervisor mode&#xff0c;虚拟机监督模式 …

电商共享购模式,消费增值返利,app开发

在当今以市场需求为主导的数字经济时代&#xff0c;消费者需求呈现出精细化管理和多元化的特性&#xff0c;目标市场日渐完善&#xff0c;另外在大数据技术迅速进步和运用的驱动下&#xff0c;总体行业的发展节奏感也在不断加速。因而&#xff0c;企业需要建立一套灵活多变的经…

HyperGBM用Adversarial Validation解决数据漂移问题

本文作者&#xff1a;杨健&#xff0c;九章云极 DataCanvas 主任架构师 数据漂移问题近年在机器学习领域来越来越得到关注&#xff0c;成为机器学习模型在实际投产中面对的一个主要挑战。当数据的分布随着时间推移逐渐发生变化&#xff0c;需要预测的数据和用于训练的数据分布…

格雷码的实现

格雷码&#xff1a;任意两个相邻的二进制数之间只有一位不同 想必通信专业的学生应该都接触过格雷码&#xff0c;它出现在数电、通信原理等课程里。 如下图所示一个四位格雷码是什么样子的&#xff1a; 格雷码的特点&#xff1a; 其最大的特点是任意上下相邻的两个码值间&am…

线性数据结构:数组 Array

一、前言数组是数据结构还是数据类型&#xff1f;数组只是个名称&#xff0c;它可以描述一组操作&#xff0c;也可以命名这组操作。数组的数据操作&#xff0c;是通过 idx->val 的方式来处理。它不是具体要求内存上要存储着连续的数据才叫数组&#xff0c;而是说&#xff0c…

内网渗透(五十六)之域控安全和跨域攻击-非约束委派攻击

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…

Linux下java服务占用cpu过高如何处理

Linux下java服务占用cpu过高如何处理 top命令查看进程信息 top按下shiftp,按cpu使用率排行,可见进程1932占用最高,并且是一个java服务 使用jps命令确认java服务 [rootVM-16-16-centos ~]# jps 1011 Jps 9462 yuan_back-0.0.1-SNAPSHOT.jar 1932 spigot-1.18.jar查找异常进程中…

利用关联来发现复杂攻击模式

日志是网络活动的重要依据&#xff0c;包含了关于您网络上所有用户和系统活动的详尽信息。基本日志分析可帮助您轻松地对数百万个日志进行分类&#xff0c;并挑选出可以表明存在可疑活动的日志&#xff0c;识别与正常网络活动不符的异常日志。通常&#xff0c;单独查看某个日志…

GCC:从源文件到可执行文件

GCC&#xff1a;从源文件到可执行文件 假设我们有hello.c 文件 #include <stdio.h> int main(){printf("hello world!\n");return 0; }怎么在linux上利用GCC命令生产可执行文件&#xff08;单文件编译&#xff09;呢&#xff1f; 一、流程 C文件从源文件到…

5.35 综合案例2.0 -称重数据上传云端

综合案例2.0 - 称重数据上传云端案例说明连线功能实现1.阿里云平台连接代码应用开发3.1新建‘普通项目’3.2关联产品和设备3.3新建‘移动应用’3.4添加组件3.5配置组件信息3.6保存预览案例说明 使用hx711串口模块称重,结合IOT studio制作手机APP远程控制并采集物体重量。 hx7…

称重传感器差分输入信号隔离转换直流放大变送器0-±10mV/0-±20mV转0-10V/4-20mA

主要特性DIN11 IPO 压力应变桥信号处理系列隔离放大器是一种将差分输入信号隔离放大、转换成按比例输出的直流信号导轨安装变送模块。产品广泛应用在电力、远程监控、仪器仪表、医疗设备、工业自控等行业。此系列模块内部嵌入了一个高效微功率的电源&#xff0c;向输入端和输出…

Oracle——物化视图

文章目录含义物化视图的语法物化视图的创建1、自动刷新的物化事务 ON COMMIT2、非自动刷新的物化视图 ON demand关于手动刷新物化视图的删除资料参考含义 什么是物化视图&#xff1f; 物化视图&#xff0c;通俗点说就是物理化的视图。 什么叫物理化&#xff1f; 将视图以表结构…

可怕,chatGPT用3小时教会我数据分析

chatGPT这玩意真的是我的救星,用它作为我的Python教练,我用三个小时学会了数据处理(Pandas)和绘图(matplotlib)。 这两个库的学习,在之前已经困扰了我7个月。之前卡壳的原因,是我一直没有耐心从零开始,按照教材设置的教程去学习Python——我擅长在项目中学习,一点一点…

SpringMVC框架知识详解(入门版)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

「RISC-V Arch」SBI 规范解读(下)

第六章 定时器扩展&#xff08;EID #0x54494D45"TIME"&#xff09; 这个定时器扩展取代了遗留定时器扩展&#xff08;EID #0x00&#xff09;&#xff0c;并遵循 v0.2 中定义的调用规约。 6.1 函数&#xff1a;设置定时器&#xff08;FID #0&#xff09; struct sbi…

TensorFlow-Keras - FM、WideAndDeep、DeepFM、DeepFwFM、DeepFmFM 理论与实战

目录 一.引言 二.浅层模型概述 1.LR 2.FM 3.FMM 4.FwFM 5.FmFM 三.常用推荐算法实现 Pre.数据准备 1.FM 2.WideAndDeep 3.DeepFM 4.DeepFwFM 5.DeepFmFM 四.总结 1.函数测试 2.函数效果与复杂度对比[来自FmFM论文] 3.More 一.引言 推荐系统中常见的 CTR 模型…

梯度下降优化器:SGD -> SGDM -> NAG ->AdaGrad -> AdaDelta -> Adam -> Nadam -> AdamW

目录 1 前言 2 梯度概念 3 一般梯度下降法 4 BGD 5 SGD 6 MBGD 7 Momentum 8 SGDM&#xff08;SGD with momentum&#xff09; 9 NAG(Nesterov Accelerated Gradient) 10 AdaGrad 11 RMSProp 12 Adadelta 13 Adam 13 Nadam 14 AdamW 15 Lion&#xff08;EvoLve…

【C++进阶】一些小知识点

const限定符 用const给字面常量起个名字&#xff08;标识符&#xff09;&#xff0c;这个标识符就称为标识符常量&#xff1b;因为标识符常量的声明和使用形式很像变量&#xff0c;所以也称常变量。声明方式&#xff1a; const int a 77; const float PI 3.14159f&#xff…

算法设计与分析期末考试复习(二)

分治法 将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的相同问题&#xff0c;以便各个击破&#xff0c;分而治之。最好使子问题的规模大致相同。 分解&#xff08;Divide&#xff09;&#xff1a;将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的子…

【拿好了!Linux 运维必备的 13 款实用工具!】

​本文介绍几款 Linux 运维比较实用的工具&#xff0c;希望对 Linux 运维人员有所帮助。 查看进程占用带宽情况 – Nethogs Nethogs 是一个终端下的网络流量监控工具可以直观的显示每个进程占用的带宽。 下载&#xff1a; http://sourceforge.net/projects/nethogs/files/ne…