Docker----------day5---安装redis集群

news/2024/4/25 19:03:42/文章来源:https://blog.csdn.net/qq_42264638/article/details/129169649

1.哈希取余分区

在这里插入图片描述
2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:
hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。

1.1优点:

简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

1.2 缺点:

原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2.一致性哈希算法分区

一致性Hash算法背景
  一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决
分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。
提出一致性Hash解决方案。
目的是当服务器个数发生变动时,
尽量减少影响客户端到服务器的映射关系

2.1一致性哈希环

一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对232取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-232-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到232-1,也就是说0点左侧的第一个点代表232-1, 0和232-1在零点中方向重合,我们把这个由232个点组成的圆环称为Hash环。

在这里插入图片描述

2.2节点映射

将集群中各个IP节点映射到环上的某一个位置。
将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:

在这里插入图片描述

2.3key落到服务器的落键规则

当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

在这里插入图片描述

2.4 优点–一致性哈希算法的容错性–一致性哈希算法的扩展性

假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。

在这里插入图片描述
扩展性
数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,
不会导致hash取余全部数据重新洗牌。

在这里插入图片描述

2.6缺点

Hash环的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,
例如系统中只有两台服务器:

在这里插入图片描述
为了在节点数目发生改变时尽可能少的迁移数据

将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。
而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。

优点
加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。

缺点
数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

3. 哈希槽分区

1 为什么出现

哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。

2 能干什么
解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。
在这里插入图片描述

槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。
哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

3 多少个hash槽
一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上

在这里插入图片描述

3主3从redis集群扩缩容配置

3.1拉取镜像

docker search redis

3.2Docker挂载配置文件

接下来就是要将redis 的配置文件进行挂载,以配置文件方式启动redis 容器。(挂载:即将宿主的文件和容器内部目录相关联,相互绑定,在宿主机内修改文件的话也随之修改容器内部文件)
1)、挂载 redis 的配置文件
2)、挂载 redis 的持久化文件(为了数据的持久化)。
本人的配置文件是放在

liunx 下redis.conf文件位置:/home/redis/redis.conf

liunx 下redis的data文件位置 :/home/redis/note1


mkdir -p /home/redis/note1
mkdir -p /home/redis/note2
mkdir -p /home/redis/note3
mkdir -p /home/redis/note4
mkdir -p /home/redis/note5
mkdir -p /home/redis/note6docker run -d --name redis-node-1 --net host --privileged=true -v /home/redis/note1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381docker run -d --name redis-node-2 --net host --privileged=true -v /home/redis/note2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382docker run -d --name redis-node-3 --net host --privileged=true -v /home/redis/note3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383docker run -d --name redis-node-4 --net host --privileged=true -v /home/redis/note4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384docker run -d --name redis-node-5 --net host --privileged=true -v /home/redis/note5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385docker run -d --name redis-node-6 --net host --privileged=true -v /home/redis/note6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386

进入容器redis-node-1并为6台机器构建集群关系

docker exec -it redis-node-1 /bin/bashredis-cli --cluster create 192.168.111.147:6381 192.168.111.147:6382 192.168.111.147:6383 192.168.111.147:6384 192.168.111.147:6385 192.168.111.147:6386 --cluster-replicas 1

在这里插入图片描述
查看节点状态

cluster nodes
cluster info

在这里插入图片描述

数据读写存储

启动6机构成的集群并通过exec进入防止路由失效加参数-c并新增两个keyredis-cli --cluster check 192.168.111.147:6381
redis-cli --cluster check 自己IP:6381

在这里插入图片描述

扩容

docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387
docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388
docker ps

add-node

 
将新增的6387作为master节点加入集群
redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381
6387 就是将要作为master新增节点
6381 就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群

reshard

重新分派槽号
命令:redis-cli --cluster reshard IP地址:端口号
redis-cli --cluster reshard 192.168.111.147:6381

在这里插入图片描述
在这里插入图片描述

del-node

命令:redis-cli --cluster del-node ip:从机端口 从机6388节点IDredis-cli --cluster del-node 192.168.111.147:6388 5d149074b7e57b802287d1797a874ed7a1a284a8
redis-cli --cluster reshard 192.168.111.147:6381

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

命令:redis-cli --cluster del-node ip:端口 6387节点IDredis-cli --cluster del-node 192.168.111.147:6387 e4781f644d4a4e4d4b4d107157b9ba8144631451

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_72875.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浏览器用一行JS代码导出cookies.txt,Python的requests库导入cookies格式化为字典格式

在Python进行爬虫时,如果仅使用requests库打开某个网页,requests的session.cookies保存的cookies信息少得可怜,有时cookies甚至是空白!但浏览器里打开同一个网页,cookies信息非常详尽,比如浏览器的cookies保…

孪生生产线:法兰工厂数据驱动的颠覆性创新

2018 年,世界经济论坛(WEF)携手麦肯锡公司共同倡议并正式启动了全球“灯塔工厂网络项目”(Lighthouse Network),共同遴选率先应用工业革命 4.0 技术实现企业盈利和持续发展的创新者与示范者。这就使得工厂系统需要对各流水线及生产运行成本方面进行多角度…

在DDD中建立领域模型

在前文《当我们谈论DDD时我们在谈论什么》中我们讨论了DDD的战略设计和战术设计。在本文中我们将继续探讨领域模型。 用领域模型表达领域概念 在实际项目中,模型设计者往往过早陷入具体构造块类型的识别,比如实体、聚合、领域服务,而忽略了…

Git(分布式版本控制系统)

提到git了,我们先来说一下什么是git? 1、通俗一点,就是一个人工版本控制器 通过人工的复制行为来保存项目的不同阶段的内容,添加适当的一些描述文字加以区分 繁琐、容易出错 产生大量重复数据 2、什么是版本控制? 版本控制是指对…

动作识别、检测、分割、解析相关数据集介绍

文章目录动作识别UCF101(UCF101 Human Actions dataset)Kinetics (Kinetics Human Action Video Dataset)动作检测 / 时序动作定位CharadesActivityNetMulti-THUMOSUCF101-24IKEA ASM动作分割Breakfast (The Breakfast Actions Dataset)GTEA (Georgia Tech Egocentric Activity…

Python base64和hashlib模块

一、base64模块 base64模块提供了在二进制数据和可打印ASCII字符间编解码的功能,包括 RFC3548中定义的Base16, Base32, Base64, Ascii85, Base85等编码。 base64模块属于标准库,无需进行安装,导入即可使用。 base64模块支持两种接口&#xf…

数组还是队列?yocto-queue 源码告诉你

前言 昨天刚学完 omit 的源码,今天趁着学习源码的热度还没结束,来学习一下另一个我之前未接触过的东西 yocto-queue。 yocto-queue 介绍 那么 yocto-queue 是什么呢?它有什么功能呢?查阅资料可得,对于数据比较多的数…

第10天-商品服务(分层领域模型及规格参数编码实现)

1.分层领域模型规约 DO( Data Object): 此对象与数据库表结构一一对应,通过 DAO 层向上传输数据源对象。DTO( Data Transfer Object):数据传输对象, Service 或 Manager 向外传输的…

【Python】PaddleHub图像分类

目录 一、环境配置: 二、问题需求 三、实验内容 1、准备数据集 2、拆分数据集 3、载入数据集 4、生成数据读取器 5、配置策略 6、组建Finetune Task 7、开始Finetune 8、预测 四、总结: 一、环境配置: 线上环境: 飞桨…

JAVA线程入门简介

线程入门简介什么是程序?什么是进程?什么是线程?单线程与多线程并发与并行线程的使用用java查看有多少个cpu创建线程的两种方式继承Thread类,重写run方法实现Runnable接口,重写run方法多线程机制为社么是start?源码解析什么是程序? 是为完…

字符串转换为二进制-课后程序(JAVA基础案例教程-黑马程序员编著-第五章-课后作业)

【案例5-4】 字符串转换为二进制 【案例介绍】 1.任务描述 本例要求编写一个程序,从键盘录入一个字符串,将字符串转换为二进制数。在转换时,将字符串中的每个字符单独转换为一个二进制数,将所有二进制数连接起来进行输出。 案…

win10下 WSL2安装及配置

目录 一. Windows中WSL2(子系统)安装前提条件 二. Windows中WSL2(子系统)安装步骤(默认安装C盘) 选择包安装模式(选择到其他盘安装) 三. Windows中WSL2(子系统)设置默认root用户登…

35-Golang中的方法

Golang中的方法方法的介绍和使用方法的声明和调用方法的调用和传参机制原理方法的声明(定义)方法注意事项和细节讨论方法和函数的区别方法的介绍和使用 在某些情况下,我们需要声明(定义)方法。比如person结构体,除了有一些字段外(年龄,姓名……

Apollo规划模块代码学习(1): 算法架构原理、运行机制一文详解

文章目录 1、Apllo算法框架原理2、Apollo规划模块概述3、规划模块代码框架1、重要数据结构2、运行机制1、Apllo算法框架原理 Apollo开源自动驾驶平台中,高清地图模块提供了每个在线模块都可以访问的高清地图。感知和定位模块提供了必要的动态环境信息,可以在预测模块中进一步…

优思学院:六西格玛管理的优势有哪些?

六西格玛的优势有哪些呢?以下我们来探讨一下。 一・降低企业整体成本 对企业而言,不良品要么被废弃,要么需要重新加工,或者需要在客户现场维修或更换,这些都会增加企业成本。根据美国的统计数据,执行3σ管…

Socket编程 | TCP服务器 之 并发阻塞模型(多进程实现)

TCP服务器IO模型 之 并发阻塞 1. 引言 在 Linux 环境下多进程的应用很多,其中最主要的就是网络/客户服务器。多进程服务器是当客户有请求时,服务器用一个子进程来处理客户请求。父进程继续等待其它客户的请求。这种方法的优点是当客户有请求时,服务器能及时处理客户,特别是…

docker 部署centos7.9并打包成docker

下载centos基础镜像 docker pull centos:centos7 运行镜像 docker run -itd --name centos-test -p 60001:22 --privileged centos:centos7 /usr/sbin/init 进入容器 docker exec -it ebec90068696 /bin/bash 配置容器信息 安装ssh服务和网络必须软件 yum install net-to…

MongoDB在Windows、Linux、Docker环境下的安装

MongoDB在Windows、Linux、Docker环境下的安装DockerDocker安装远程连接WindowsWindows安装服务相关命令压缩包形式安装Mac、Ubuntu、Centos一键安装MacUbuntucentos源码安装使用Atlas免费MongoDB云数据库申请云数据库连接测试Docker Docker安装 拉取镜像 docker pull mongo…

洛谷P5736 【深基7.例2】质数筛 C语言/C++

【深基7.例2】质数筛 题目描述 输入 nnn 个不大于 10510^5105 的正整数。要求全部储存在数组中,去除掉不是质数的数字,依次输出剩余的质数。 输入格式 第一行输入一个正整数 nnn,表示整数个数。 第二行输入 nnn 个正整数 aia_iai​&…

数据结构与算法(二)(Python版)

数据结构与算法(一)(Python版) 文章目录递归动规初识递归:数列求和递归三定律递归的应用:任意进制转换递归的应用:斐波那契数列递归调用的实现分治策略与递归优化问题和贪心策略找零兑换问题贪心…