【知识存储】用于深度学习研究的 ☆ 概率论和数理统计☆ 基础理论知识,用时查阅,灵活运用,很基础很重要

news/2024/4/20 6:53:21/文章来源:https://blog.csdn.net/weixin_43424450/article/details/131715667

随机事件和概率

1.事件的关系与运算

  • (1) 子事件: A ⊂ B A \subset B AB,若 A A A发生,则 B B B发生。

  • (2) 相等事件: A = B A = B A=B,即 A ⊂ B A \subset B AB,且 B ⊂ A B \subset A BA

  • (3) 和事件: A ⋃ B A\bigcup B AB(或 A + B A + B A+B), A A A B B B中至少有一个发生。

  • (4) 差事件: A − B A - B AB A A A发生但 B B B不发生。

  • (5) 积事件: A ⋂ B A\bigcap B AB(或 A B {AB} AB), A A A B B B同时发生。

  • (6) 互斥事件(互不相容): A ⋂ B A\bigcap B AB= ∅ \varnothing

  • (7) 互逆事件(对立事件): A ⋂ B = ∅ , A ⋃ B = Ω , A = B ˉ , B = A ˉ A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A} AB=,AB=Ω,A=Bˉ,B=Aˉ

2.运算律

  • (1) 交换律: A ⋃ B = B ⋃ A , A ⋂ B = B ⋂ A A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A AB=BA,AB=BA

  • (2) 结合律: ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) (A\bigcup B)\bigcup C=A\bigcup (B\bigcup C) (AB)C=A(BC)

  • (3) 分配律: ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) (A\bigcap B)\bigcap C=A\bigcap (B\bigcap C) (AB)C=A(BC)

3.德 ⋅ \centerdot 摩根律

  • A ⋃ B ‾ = A ˉ ⋂ B ˉ \overline{A\bigcup B}=\bar{A}\bigcap \bar{B} AB=AˉBˉ A ⋂ B ‾ = A ˉ ⋃ B ˉ \overline{A\bigcap B}=\bar{A}\bigcup \bar{B} AB=AˉBˉ

4.完全事件组

  • A 1 A 2 ⋯ A n {{A}_{1}}{{A}_{2}}\cdots {{A}{n}} A1A2An 两两互斥,且和事件为必然事件,即 A i ⋂ A j = ∅ , i ≠ j , ⋃ i = 1 n = Ω {A_i} \bigcap {A_j}=\varnothing, i \ne j ,\bigcup_{i=1}^{n} = \Omega AiAj=,i=j,i=1n=Ω

5.概率的基本公式

  • (1)条件概率: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB),表示 A A A 发生的条件下, B B B 发生的概率。

  • (2)全概率公式: P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) , B i B j = ∅ , i ≠ j , ⋃ n i = 1 B i = Ω P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega P(A)=i=1nP(ABi)P(Bi),BiBj=,i=j,i=1nBi=Ω

  • (3) Bayes公式: P ( B j ∣ A ) = P ( A ∣ B j ) P ( B j ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) , j = 1 , 2 , ⋯ , n P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n P(BjA)=i=1nP(ABi)P(Bi)P(ABj)P(Bj),j=1,2,,n注:上述公式中事件 B i {{B}_{i}} Bi的个数可为可列个。

  • (4)乘法公式: P ( A 1 A 2 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) = P ( A 2 ) P ( A 1 ∣ A 2 ) P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}}) P(A1A2)=P(A1)P(A2A1)=P(A2)P(A1A2); P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)

6.事件的独立性

  • (1) A A A B B B 相互独立 ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B),

  • (2) A A A B B B C C C两两独立

    • ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B); P ( B C ) = P ( B ) P ( C ) P(BC)=P(B)P(C) P(BC)=P(B)P(C) ; P ( A C ) = P ( A ) P ( C ) P(AC)=P(A)P(C) P(AC)=P(A)P(C);
  • (3) A A A B B B C C C相互独立

    • ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B); P ( B C ) = P ( B ) P ( C ) P(BC)=P(B)P(C) P(BC)=P(B)P(C) ; P ( A C ) = P ( A ) P ( C ) P(AC)=P(A)P(C) P(AC)=P(A)P(C) ; P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)

7.独立重复试验

  • 将某试验独立重复 n n n 次,若每次实验中事件A发生的概率为 p p p,则 n n n 次试验中 A A A 发生 k k k 次的概率为: P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}} P(X=k)=Cnkpk(1p)nk

8.重要公式与结论

  • ( 1 ) P ( A ˉ ) = 1 − P ( A ) (1)P(\bar{A})=1-P(A) (1)P(Aˉ)=1P(A)

  • ( 2 ) P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) (2)P(A\bigcup B)=P(A)+P(B)-P(AB) (2)P(AB)=P(A)+P(B)P(AB) ; P ( A ⋃ B ⋃ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)

  • ( 3 ) P ( A − B ) = P ( A ) − P ( A B ) (3)P(A-B)=P(A)-P(AB) (3)P(AB)=P(A)P(AB)

  • ( 4 ) P ( A B ˉ ) = P ( A ) − P ( A B ) , P ( A ) = P ( A B ) + P ( A B ˉ ) , (4)P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}), (4)P(ABˉ)=P(A)P(AB),P(A)=P(AB)+P(ABˉ),; P ( A ⋃ B ) = P ( A ) + P ( A ˉ B ) = P ( A B ) + P ( A B ˉ ) + P ( A ˉ B ) P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B) P(AB)=P(A)+P(AˉB)=P(AB)+P(ABˉ)+P(AˉB)

  • (5)条件概率 P ( ⋅ ∣ B ) P(\centerdot |B) P(B)满足概率的所有性质, 例如:. P ( A ˉ 1 ∣ B ) = 1 − P ( A 1 ∣ B ) P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B) P(Aˉ1B)=1P(A1B) ; P ( A 1 ⋃ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B) P(A1A2B)=P(A1B)+P(A2B)P(A1A2B) ; P ( A 1 A 2 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B) P(A1A2B)=P(A1B)P(A2A1B)

  • (6)若 A 1 , A 2 , ⋯ , A n {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}} A1,A2,,An相互独立,则 P ( ⋂ i = 1 n A i ) = ∏ i = 1 n P ( A i ) , P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})}, P(i=1nAi)=i=1nP(Ai), P ( ⋃ i = 1 n A i ) = ∏ i = 1 n ( 1 − P ( A i ) ) P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))} P(i=1nAi)=i=1n(1P(Ai))

  • (7)互斥、互逆与独立性之间的关系:

    • A A A B B B互逆 ⇒ \Rightarrow A A A B B B互斥,但反之不成立, A A A B B B互斥(或互逆)且均非零概率事件 ⇒ \Rightarrow A A A B B B 不独立.
  • (8)若 A 1 , A 2 , ⋯ , A m , B 1 , B 2 , ⋯ , B n {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}} A1,A2,,Am,B1,B2,,Bn 相互独立,则 f ( A 1 , A 2 , ⋯ , A m ) f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}}) f(A1,A2,,Am) g ( B 1 , B 2 , ⋯ , B n ) g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}) g(B1,B2,,Bn) 也相互独立,其中 f ( ⋅ ) , g ( ⋅ ) f(\centerdot ),g(\centerdot ) f(),g() 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

  • 取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

  • 定义: F ( x ) = P ( X ≤ x ) , − ∞ < x < + ∞ F(x) = P(X \leq x), - \infty < x < + \infty F(x)=P(Xx),<x<+,性质如下:

    • (1) 0 ≤ F ( x ) ≤ 1 0 \leq F(x) \leq 1 0F(x)1

    • (2) F ( x ) F(x) F(x)单调不减

    • (3) 右连续 F ( x + 0 ) = F ( x ) F(x + 0) = F(x) F(x+0)=F(x)

    • (4) F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F( - \infty) = 0,F( + \infty) = 1 F()=0,F(+)=1

3.离散型随机变量的概率分布

  • P ( X = x i ) = p i , i = 1 , 2 , ⋯ , n , ⋯ p i ≥ 0 , ∑ i = 1 ∞ p i = 1 P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1 P(X=xi)=pi,i=1,2,,n,pi0,i=1pi=1

4.连续型随机变量的概率密度

  • 概率密度 f ( x ) f(x) f(x);非负可积,且:

    • (1) f ( x ) ≥ 0 , f(x) \geq 0, f(x)0,

    • (2) ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{- \infty}^{+\infty}{f(x){dx} = 1} +f(x)dx=1

    • (3) x x x f ( x ) f(x) f(x)的连续点,则: f ( x ) = F ′ ( x ) f(x) = F'(x) f(x)=F(x)分布函数 F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{- \infty}^{x}{f(t){dt}} F(x)=xf(t)dt

5.常见分布

  • (1) 0-1分布: P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1 P(X=k)=pk(1p)1k,k=0,1

  • (2) 二项分布: B ( n , p ) B(n,p) B(n,p) P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯ , n P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n P(X=k)=Cnkpk(1p)nk,k=0,1,,n

  • (3) Poisson分布: p ( λ ) p(\lambda) p(λ) P ( X = k ) = λ k k ! e − λ , λ > 0 , k = 0 , 1 , 2 ⋯ P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots P(X=k)=k!λkeλ,λ>0,k=0,1,2

  • (4) 均匀分布 U ( a , b ) U(a,b) U(a,b) f ( x ) = { 1 b − a , a < x < b 0 , f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix} f(x)={ba1,a<x<b0,

  • (5) 正态分布: N ( μ , σ 2 ) : N(\mu,\sigma^{2}): N(μ,σ2): φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , σ > 0 , ∞ < x < + ∞ \varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty φ(x)=2π σ1e2σ2(xμ)2,σ>0,<x<+

  • (6)指数分布: E ( λ ) : f ( x ) = { λ e − λ x , x > 0 , λ > 0 0 , E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix} E(λ):f(x)={λeλx,x>0,λ>00,

  • (7)几何分布: G ( p ) : P ( X = k ) = ( 1 − p ) k − 1 p , 0 < p < 1 , k = 1 , 2 , ⋯ . G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots. G(p):P(X=k)=(1p)k1p,0<p<1,k=1,2,.

  • (8)超几何分布: H ( N , M , n ) : P ( X = k ) = C M k C N − M n − k C N n , k = 0 , 1 , ⋯ , m i n ( n , M ) H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M) H(N,M,n):P(X=k)=CNnCMkCNMnk,k=0,1,,min(n,M)

6.随机变量函数的概率分布

  • (1)离散型: P ( X = x 1 ) = p i , Y = g ( X ) P(X = x_{1}) = p_{i},Y = g(X) P(X=x1)=pi,Y=g(X);则: P ( Y = y j ) = ∑ g ( x i ) = y i P ( X = x i ) P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})} P(Y=yj)=g(xi)=yiP(X=xi)

  • (2)连续型: X ~ f X ( x ) , Y = g ( x ) X\tilde{\ }f_{X}(x),Y = g(x) X ~fX(x),Y=g(x);则: F y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = ∫ g ( x ) ≤ y f x ( x ) d x F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx} Fy(y)=P(Yy)=P(g(X)y)=g(x)yfx(x)dx f Y ( y ) = F Y ′ ( y ) f_{Y}(y) = F'_{Y}(y) fY(y)=FY(y)

7.重要公式与结论

  • (1) X ∼ N ( 0 , 1 ) ⇒ φ ( 0 ) = 1 2 π , Φ ( 0 ) = 1 2 , X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2}, XN(0,1)φ(0)=2π 1,Φ(0)=21, Φ ( − a ) = P ( X ≤ − a ) = 1 − Φ ( a ) \Phi( - a) = P(X \leq - a) = 1 - \Phi(a) Φ(a)=P(Xa)=1Φ(a)

  • (2) X ∼ N ( μ , σ 2 ) ⇒ X − μ σ ∼ N ( 0 , 1 ) , P ( X ≤ a ) = Φ ( a − μ σ ) X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma}) XN(μ,σ2)σXμN(0,1),P(Xa)=Φ(σaμ)

  • (3) X ∼ E ( λ ) ⇒ P ( X > s + t ∣ X > s ) = P ( X > t ) X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t) XE(λ)P(X>s+tX>s)=P(X>t)

  • (4) X ∼ G ( p ) ⇒ P ( X = m + k ∣ X > m ) = P ( X = k ) X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k) XG(p)P(X=m+kX>m)=P(X=k)

  • (5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数

  • (6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

  • 由两个随机变量构成的随机向量 ( X , Y ) (X,Y) (X,Y), 联合分布为 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y) = P(X \leq x,Y \leq y) F(x,y)=P(Xx,Yy)

2.二维离散型随机变量的分布

  • (1) 联合概率分布律 P { X = x i , Y = y j } = p i j ; i , j = 1 , 2 , ⋯ P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots P{X=xi,Y=yj}=pij;i,j=1,2,

  • (2) 边缘分布律 p i ⋅ = ∑ j = 1 ∞ p i j , i = 1 , 2 , ⋯ p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots pi=j=1pij,i=1,2, p ⋅ j = ∑ i ∞ p i j , j = 1 , 2 , ⋯ p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots pj=ipij,j=1,2,

  • (3) 条件分布律 P { X = x i ∣ Y = y j } = p i j p ⋅ j P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}} P{X=xiY=yj}=pjpij P { Y = y j ∣ X = x i } = p i j p i ⋅ P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}} P{Y=yjX=xi}=pipij

3. 二维连续性随机变量的密度

  • (1) 联合概率密度 f ( x , y ) : f(x,y): f(x,y):

    • f ( x , y ) ≥ 0 f(x,y) \geq 0 f(x,y)0

    • ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1 ++f(x,y)dxdy=1

  • (2) 分布函数: F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}} F(x,y)=xyf(u,v)dudv

  • (3) 边缘概率密度: f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}} fX(x)=+f(x,y)dy f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx} fY(y)=+f(x,y)dx

  • (4) 条件概率密度: f X ∣ Y ( x | y ) = f ( x , y ) f Y ( y ) f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)} fXY(xy)=fY(y)f(x,y) f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)} fYX(yx)=fX(x)f(x,y)

4.常见二维随机变量的联合分布

  • (1) 二维均匀分布: ( x , y ) ∼ U ( D ) (x,y) \sim U(D) (x,y)U(D) , f ( x , y ) = { 1 S ( D ) , ( x , y ) ∈ D 0 , 其他 f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases} f(x,y)={S(D)1,(x,y)D0,其他

  • (2) 二维正态分布: ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ), ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ) f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 . exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\} f(x,y)=2πσ1σ21ρ2 1.exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}

5.随机变量的独立性和相关性

  • X X X Y Y Y的相互独立: ⇔ F ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right) F(x,y)=FX(x)FY(y):

    • ⇔ p i j = p i ⋅ ⋅ p ⋅ j \Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j} pij=pipj(离散型)

    • ⇔ f ( x , y ) = f X ( x ) f Y ( y ) \Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right) f(x,y)=fX(x)fY(y)(连续型)

  • X X X Y Y Y的相关性:

    • 相关系数 ρ X Y = 0 \rho_{{XY}} = 0 ρXY=0时,称 X X X Y Y Y不相关,否则称 X X X Y Y Y相关

6.两个随机变量简单函数的概率分布

  • 离散型: P ( X = x i , Y = y i ) = p i j , Z = g ( X , Y ) P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right) P(X=xi,Y=yi)=pij,Z=g(X,Y) 则: P ( Z = z k ) = P { g ( X , Y ) = z k } = ∑ g ( x i , y i ) = z k P ( X = x i , Y = y j ) P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)} P(Z=zk)=P{g(X,Y)=zk}=g(xi,yi)=zkP(X=xi,Y=yj)

  • 连续型: ( X , Y ) ∼ f ( x , y ) , Z = g ( X , Y ) \left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right) (X,Y)f(x,y),Z=g(X,Y),则: F z ( z ) = P { g ( X , Y ) ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy} Fz(z)=P{g(X,Y)z}=g(x,y)zf(x,y)dxdy f z ( z ) = F z ′ ( z ) f_{z}(z) = F'_{z}(z) fz(z)=Fz(z)

7.重要公式与结论

  • (1) 边缘密度公式: f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy} fX(x)=+f(x,y)dy, f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx} fY(y)=+f(x,y)dx

  • (2) P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}} P{(X,Y)D}=Df(x,y)dxdy

  • (3) 若 ( X , Y ) (X,Y) (X,Y)服从二维正态分布 N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) N(μ1,μ2,σ12,σ22,ρ),则有:

    • X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) . X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}). XN(μ1,σ12),YN(μ2,σ22).

    • X X X Y Y Y相互独立 ⇔ ρ = 0 \Leftrightarrow \rho = 0 ρ=0,即 X X X Y Y Y不相关。

    • C 1 X + C 2 Y ∼ N ( C 1 μ 1 + C 2 μ 2 , C 1 2 σ 1 2 + C 2 2 σ 2 2 + 2 C 1 C 2 σ 1 σ 2 ρ ) C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho) C1X+C2YN(C1μ1+C2μ2,C12σ12+C22σ22+2C1C2σ1σ2ρ)

    • X {\ X}  X关于 Y = y Y=y Y=y的条件分布为: N ( μ 1 + ρ σ 1 σ 2 ( y − μ 2 ) , σ 1 2 ( 1 − ρ 2 ) ) N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2})) N(μ1+ρσ2σ1(yμ2),σ12(1ρ2))

    • Y Y Y关于 X = x X = x X=x的条件分布为: N ( μ 2 + ρ σ 2 σ 1 ( x − μ 1 ) , σ 2 2 ( 1 − ρ 2 ) ) N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2})) N(μ2+ρσ1σ2(xμ1),σ22(1ρ2))

  • (4) 若 X X X Y Y Y独立,且分别服从 N ( μ 1 , σ 1 2 ) , N ( μ 1 , σ 2 2 ) N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}) N(μ1,σ12),N(μ1,σ22),则: ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , 0 ) \left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0) (X,Y)N(μ1,μ2,σ12,σ22,0), C 1 X + C 2 Y ~ N ( C 1 μ 1 + C 2 μ 2 , C 1 2 σ 1 2 C 2 2 σ 2 2 ) . C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}). C1X+C2Y ~N(C1μ1+C2μ2,C12σ12C22σ22).

  • (5) 若 X X X Y Y Y相互独立, f ( x ) f\left( x \right) f(x) g ( x ) g\left( x \right) g(x)为连续函数, 则 f ( X ) f\left( X \right) f(X) g ( Y ) g(Y) g(Y)也相互独立。

随机变量的数字特征

1.数学期望

  • 离散型: P { X = x i } = p i , E ( X ) = ∑ i x i p i P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}} P{X=xi}=pi,E(X)=ixipi

  • 连续型: X ∼ f ( x ) , E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx} Xf(x),E(X)=+xf(x)dx,性质如下:

    • (1) E ( C ) = C , E [ E ( X ) ] = E ( X ) E(C) = C,E\lbrack E(X)\rbrack = E(X) E(C)=C,E[E(X)]=E(X)

    • (2) E ( C 1 X + C 2 Y ) = C 1 E ( X ) + C 2 E ( Y ) E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y) E(C1X+C2Y)=C1E(X)+C2E(Y)

    • (3) 若 X X X Y Y Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY) = E(X)E(Y) E(XY)=E(X)E(Y)

    • (4) [ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) \left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2}) [E(XY)]2E(X2)E(Y2)

2.方差 D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2} D(X)=E[XE(X)]2=E(X2)[E(X)]2

3.标准差 D ( X ) \sqrt{D(X)} D(X)

4.离散型: D ( X ) = ∑ i [ x i − E ( X ) ] 2 p i D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}} D(X)=i[xiE(X)]2pi

5.连续型: D ( X ) = ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx D(X)=+[xE(X)]2f(x)dx,性质如下:

  • (1) D ( C ) = 0 , D [ E ( X ) ] = 0 , D [ D ( X ) ] = 0 \ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0  D(C)=0,D[E(X)]=0,D[D(X)]=0

  • (2) X X X Y Y Y相互独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X \pm Y) = D(X) + D(Y) D(X±Y)=D(X)+D(Y)

  • (3) D ( C 1 X + C 2 ) = C 1 2 D ( X ) \ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)  D(C1X+C2)=C12D(X)

  • (4) 一般有 D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) = D ( X ) + D ( Y ) ± 2 ρ D ( X ) D ( Y ) D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)} D(X±Y)=D(X)+D(Y)±2Cov(X,Y)=D(X)+D(Y)±2ρD(X) D(Y)

  • (5) D ( X ) < E ( X − C ) 2 , C ≠ E ( X ) \ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)  D(X)<E(XC)2,C=E(X)

  • (6) D ( X ) = 0 ⇔ P { X = C } = 1 \ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1  D(X)=0P{X=C}=1

6.随机变量函数的数学期望

  • (1) 对于函数 Y = g ( x ) Y = g(x) Y=g(x)

    • X X X为离散型: P { X = x i } = p i , E ( Y ) = ∑ i g ( x i ) p i P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}} P{X=xi}=pi,E(Y)=ig(xi)pi

    • X X X为连续型: X ∼ f ( x ) , E ( Y ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx} Xf(x),E(Y)=+g(x)f(x)dx

  • (2) Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y); ( X , Y ) ∼ P { X = x i , Y = y j } = p i j \left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}} (X,Y)P{X=xi,Y=yj}=pij; E ( Z ) = ∑ i ∑ j g ( x i , y j ) p i j E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}} E(Z)=ijg(xi,yj)pij ( X , Y ) ∼ f ( x , y ) \left( X,Y \right)\sim f(x,y) (X,Y)f(x,y); E ( Z ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}} E(Z)=++g(x,y)f(x,y)dxdy

7.协方差

  • C o v ( X , Y ) = E [ ( X − E ( X ) ( Y − E ( Y ) ) ] Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack Cov(X,Y)=E[(XE(X)(YE(Y))]

8.相关系数

  • ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y), k k k阶原点矩 E ( X k ) E(X^{k}) E(Xk); k k k阶中心矩 E { [ X − E ( X ) ] k } E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\} E{[XE(X)]k}:性质如下:

    • (1) C o v ( X , Y ) = C o v ( Y , X ) \ Cov(X,Y) = Cov(Y,X)  Cov(X,Y)=Cov(Y,X)

    • (2) C o v ( a X , b Y ) = a b C o v ( Y , X ) \ Cov(aX,bY) = abCov(Y,X)  Cov(aX,bY)=abCov(Y,X)

    • (3) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) \ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)  Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

    • (4) ∣ ρ ( X , Y ) ∣ ≤ 1 \ \left| \rho\left( X,Y \right) \right| \leq 1  ρ(X,Y)1

    • (5) ρ ( X , Y ) = 1 ⇔ P ( Y = a X + b ) = 1 \ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1  ρ(X,Y)=1P(Y=aX+b)=1 ,其中 a > 0 a > 0 a>0 ρ ( X , Y ) = − 1 ⇔ P ( Y = a X + b ) = 1 \rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ρ(X,Y)=1P(Y=aX+b)=1,其中 a < 0 a < 0 a<0

9.重要公式与结论

  • (1) D ( X ) = E ( X 2 ) − E 2 ( X ) \ D(X) = E(X^{2}) - E^{2}(X)  D(X)=E(X2)E2(X)

  • (2) C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \ Cov(X,Y) = E(XY) - E(X)E(Y)  Cov(X,Y)=E(XY)E(X)E(Y)

  • (3) ∣ ρ ( X , Y ) ∣ ≤ 1 , \left| \rho\left( X,Y \right) \right| \leq 1, ρ(X,Y)1, ρ ( X , Y ) = 1 ⇔ P ( Y = a X + b ) = 1 \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ρ(X,Y)=1P(Y=aX+b)=1,其中 a > 0 a > 0 a>0 ρ ( X , Y ) = − 1 ⇔ P ( Y = a X + b ) = 1 \rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ρ(X,Y)=1P(Y=aX+b)=1,其中 a < 0 a < 0 a<0

  • (4) 下面5个条件互为充要条件: ρ ( X , Y ) = 0 \rho(X,Y) = 0 ρ(X,Y)=0 ⇔ C o v ( X , Y ) = 0 \Leftrightarrow Cov(X,Y) = 0 Cov(X,Y)=0 ⇔ E ( X , Y ) = E ( X ) E ( Y ) \Leftrightarrow E(X,Y) = E(X)E(Y) E(X,Y)=E(X)E(Y) ⇔ D ( X + Y ) = D ( X ) + D ( Y ) \Leftrightarrow D(X + Y) = D(X) + D(Y) D(X+Y)=D(X)+D(Y)

    • ⇔ D ( X − Y ) = D ( X ) + D ( Y ) \Leftrightarrow D(X - Y) = D(X) + D(Y) D(XY)=D(X)+D(Y)
  • 注: X X X Y Y Y独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

  • 总体:研究对象的全体,它是一个随机变量,用 X X X表示。

  • 个体:组成总体的每个基本元素。

  • 简单随机样本:来自总体 X X X n n n个相互独立且与总体同分布的随机变量 X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn,称为容量为 n n n的简单随机样本,简称样本。

  • 统计量:设 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,是来自总体 X X X的一个样本, g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn))是样本的连续函数,且 g ( ) g() g()中不含任何未知参数,则称 g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn)为统计量。

  • 样本均值: X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i} X=n1i=1nXi

  • 样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2} S2=n11i=1n(XiX)2

  • 样本矩:样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots Ak=n1i=1nXik,k=1,2,

  • 样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , ⋯ B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots Bk=n1i=1n(XiX)k,k=1,2,

2.分布

  • χ 2 \chi^{2} χ2分布: χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n) χ2=X12+X22++Xn2χ2(n),其中 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,相互独立,且同服从 N ( 0 , 1 ) N(0,1) N(0,1)

  • t t t分布: T = X Y / n ∼ t ( n ) T = \frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/n Xt(n) ,其中 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n), XN(0,1),Yχ2(n), X X X Y Y Y 相互独立。

  • F F F分布: F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}) F=Y/n2X/n1F(n1,n2),其中 X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) , X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}), Xχ2(n1),Yχ2(n2), X X X Y Y Y相互独立。

  • 分位数:若 P ( X ≤ x α ) = α , P(X \leq x_{\alpha}) = \alpha, P(Xxα)=α,则称 x α x_{\alpha} xα X X X α \alpha α分位数

3.正态总体的常用样本分布

  • X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的样本, X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},} X=n1i=1nXi,S2=n11i=1n(XiX)2,则:

    • X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ } XN(μ,nσ2)  或者 X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) n σXμN(0,1)

    • ( n − 1 ) S 2 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)} σ2(n1)S2=σ21i=1n(XiX)2χ2(n1)

    • 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)} σ21i=1n(Xiμ)2χ2(n)

    • X ‾ − μ S / n ∼ t ( n − 1 ) {\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)   S/n Xμt(n1)

4.重要公式与结论

  • (1) 对于 χ 2 ∼ χ 2 ( n ) \chi^{2}\sim\chi^{2}(n) χ2χ2(n),有 E ( χ 2 ( n ) ) = n , D ( χ 2 ( n ) ) = 2 n ; E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n; E(χ2(n))=n,D(χ2(n))=2n;

  • (2) 对于 T ∼ t ( n ) T\sim t(n) Tt(n),有 E ( T ) = 0 , D ( T ) = n n − 2 ( n > 2 ) E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2) E(T)=0,D(T)=n2n(n>2)

  • (3) 对于 F ~ F ( m , n ) F\tilde{\ }F(m,n) F ~F(m,n),有 1 F ∼ F ( n , m ) , F a / 2 ( m , n ) = 1 F 1 − a / 2 ( n , m ) ; \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)}; F1F(n,m),Fa/2(m,n)=F1a/2(n,m)1;

  • (4) 对于任意总体 X X X,有 E ( X ‾ ) = E ( X ) , E ( S 2 ) = D ( X ) , D ( X ‾ ) = D ( X ) n E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n} E(X)=E(X),E(S2)=D(X),D(X)=nD(X)

## 数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。## 上面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~## 来源于AIStudio内容整理:必备数学知识(概率论和数理统计部分)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_331124.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第G1周:生成对抗网络(GAN)入门

目录 一、课题背景和开发环境二、理论基础1.生成器2. 判别器3. 基本原理 三、前期准备工作1. 定义超参数2.下载数据3. 配置数据 四、定义模型1. 定义鉴别器2. 定义生成器 五、训练模型1. 创建实例2. 训练模型3. 保存模型 &#x1f368; 本文为&#x1f517;365天深度学习训练营…

prometheus调整默认数据存储时间

调整kubernetes部署的prometheus数据存储时间 由于prometheus是用kuberentes部署的&#xff0c;没办法像传统部署方式那种直接在启动参数增加存储时间的参数。需要在configmap里或者在deployment里添加&#xff0c;我这里使用的方式是在deployement里添加调整存储时间的参数。…

React native 已有项目升级兼容web

基础 概念 | webpack 中文文档 | webpack 中文文档 | webpack 中文网 深入理解Webpack及Babel的使用 - 掘金 Introduction to React Native for Web // React Native for Web Webpack 是一个现代的 JavaScript 应用程序的静态模块打包工具&#xff0c;它将应用程序所依赖的各…

Star History 月度开源精选|2023 年 6 月

上一期 Star History 月度精选是写给市场、运营人员的&#xff0c;而这一期回归到 DevTools 类别&#xff0c;我们六月发现了好一些开发者可以用的不错工具&#xff01; AI Getting Started 还记得 Supabase “Build in a weekend” 的广告词吗&#xff01;AI Getting Started…

AIGC文生图:使用ControlNet 控制 Stable Diffusion

1 ControlNet介绍 1.1 ControlNet是什么&#xff1f; ControlNet是斯坦福大学研究人员开发的Stable Diffusion的扩展&#xff0c;使创作者能够轻松地控制AI图像和视频中的对象。它将根据边缘检测、草图处理或人体姿势等各种条件来控制图像生成。 论坛地址&#xff1a;Adding…

Docker安装Rabbitmq超详细教程

&#x1f680; Docker安装Rabbitmq保姆级教程 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1…

Java 装箱拆箱原理 包装类型缓存池

JAVA中的基本数据类型 byteshortintlongfloatdoublebooleanchar 为了让上述基本数据类型可以转为对象&#xff0c;Java在1.5推出了一系列包装类&#xff0c;基本类和包装类互相转换的过程&#xff0c;称为装箱和拆箱 缓存池 缓存池也叫常量池。它是事先存储一些常量数据用以…

数据结构——各种常见算法的实现方法和思路

文章目录 常见的排序算法类型复杂度和稳定性 1.冒泡排序2.直接插入排序3.希尔排序4.简单选择排序方法1&#xff1a;双向遍历选择排序方法2&#xff1a;单向遍历选择排序 5.归并排序方法1&#xff1a;递归方法2&#xff1a;非递归 6.快速排序方法1&#xff1a;随机取keyi方法2&a…

JMeter自定义日志与日志分析

1 JMeter日志概览 JMeter与Java程序一样&#xff0c;会记录事件日志&#xff0c;日志文件保存在bin目录中&#xff0c;名称为jmeter.log。当然&#xff0c;我们也可以在面板中直接察看日志&#xff0c;点击右上角黄色标志物可以打开日志面板&#xff0c;再次点击收起。 可见&…

PostgreSQL MVCC的弊端优化方案

我们之前的博客文章“我们最讨厌的 PostgreSQL 部分”讨论了大家最喜欢的 DBMS 多版本并发控制 (MVCC) 实现所带来的问题。其中包括版本复制、表膨胀、索引维护和真空管理。本文将探讨针对每个问题优化 PostgreSQL 的方法。 尽管 PostgreSQL 的 MVCC 实现是 Oracle 和 MySQL 等…

layui会议OA项目数据表格新增改查

文章目录 前言一、后台代码编写1.1 数据表优化1.2 R工具类1.3 UserDao新增改查1.4 Servlet的编写 二、前台页面的编写2.1 userManege.jsp2.2 userManage.js2.3 新增、修改用户共用jsp2.4add、edit的js 三、演示3.1 查询3.2 新增3.3 修改3.4 删除 前言 在上篇博客我们实现了左侧…

【数据结构】二叉树——链式结构

目录 一、前置声明 二、二叉树的遍历 2.1 前序、中序以及后序遍历 2.2 层序遍历 三、节点个数以及高度 3.1 节点个数 3.2 叶子节点个数 3.3 第k层节点个数 3.4 二叉树的高度/深度 3.5 查找值为x的节点 四、二叉树的创建和销毁 4.1 构建二叉树 4.2 二叉树销毁 4.3 …

Javaweb的三大组件:servlet、filter、listener

1.前言 Servlet翻译过来是小服务程序&#xff0c;所以呢&#xff0c;在javaweb中Servlet是用来处理客户端请求的动态资源&#xff0c;一般表示小程序&#xff0c;在实际开发javaweb的过程中使用的比较多一些&#xff0c;通常的使用方法是根据具体的业务需求来继承HttpServlet&a…

Rdkit|分子3D构象生成与优化

github; 地址 文章目录 Rdkit|分子3D构象生成与优化构象生成算法概述基于距离&#xff08;distance-based&#xff09;代码示例 距离几何算法生成3D结构距离几何ETKDG生成3D构象距离几何ETKDG生成多构象将Conformer类转为Mol类手动对齐 距离几何ETKDGMMFF生成3D构象距离几何ETK…

Node.js 版本管理工具 n 使用指南

Node.js 版本更新很快&#xff0c;目前 node v20.x 已经发布&#xff0c;我们在使用时避免不了会需要切换不同的 Node.js 的版本来使用不同版本的特性。 所以就出现了像 windows 上的 nvm&#xff0c;MacOS 上的 n 工具&#xff0c;本文就介绍一下如何使用 n 管理 Node.js 的版…

InsCode Stable Diffusion使用教程【InsCode Stable Diffusion美图活动一期】

记录一下如何使用 InsCode Stable Diffusion 进行 AI 绘图以及使用感受。 一、背景介绍 目前市面上比较权威&#xff0c;并能用于工作中的 AI 绘画软件其实就两款。一个叫 Midjourney&#xff08;简称 MJ&#xff09;&#xff0c;另一个叫 Stable Diffusion&#xff08;简称 …

FPGA——按键控制led灯

文章目录 一、实验环境二、实验任务三、系统设计四、实验过程4.1 编写verilog代码4.2 引脚配置 五、仿真5.1 仿真代码5.2 仿真结果 六、实验结果七、总结 一、实验环境 quartus 18.1 modelsim vscode Cyclone IV开发板 二、实验任务 使用开发板上的四个按键控制四个LED灯。按…

【微信小程序创作之路】- 小程序窗口整体配置(导航栏、标题)

【微信小程序创作之路】- 小程序窗口导航栏配置 第五章 微信小程序窗口导航栏配置 文章目录 【微信小程序创作之路】- 小程序窗口导航栏配置前言一、入口文件的配置二、页面配置三、全局默认窗口配置1.navigationBarTitleText&#xff1a;导航栏标题文字2.navigationBarBackgr…

​​Layui之用户管理实例(对数据的增删改查)

目录 ​编辑一、R工具介绍&#xff08;&#xff09; ​编辑二、数据表的增删改查 ​编辑2.1我们先得从查询数据库的语句入手 2.2优化dao类 2.4UserAction类 2.5前台的页面实现增删改查操作 2.6 userManage页面JS 2.7user新增、修改iframe层js 前言 上一篇我分享了…

SpringCloudAlibaba:消息驱动之RocketMQ学习

目录 一、MQ简介 &#xff08;一&#xff09;什么是MQ &#xff08;二&#xff09;MQ的应用场景 1、异步解耦 2、流量削峰 &#xff08;三&#xff09;常见的MQ产品 二、RocketMQ入门 &#xff08;一&#xff09;RocketMQ安装部署 1、环境要求 2、下载RocketMQ 3、安…