大模型预训练结果到底是什么?

news/2024/7/25 19:48:34/文章来源:https://blog.csdn.net/ituff/article/details/139300594

近日参加一个线下 AI 交流会议,会上有个非本行业的老师提问:“大家说的训练好的大模型到底是什么?是像 Word 软件一样可以直接使用的程序吗?” 这个问题看似简单,却一下把我问住了。的确,我们这些身处 AI 领域的人,每天都在谈论“预训练”、“微调”、“大模型”,却很少停下来思考,这些专业术语对于圈外人来说意味着什么。

为了更好地解答这位老师的疑问,我决定以一个更形象的比喻来解释“训练好的大模型”。

想象一下,你想做一道美味的宫保鸡丁。

你需要准备食材:鸡肉、花生、辣椒等等,这些食材就好比 “数据”,是训练大模型的原材料。

你需要准备工具:锅、铲、刀等等,这些工具就好比 PyTorch这样的 “框架”,提供处理食材和烹饪的工具。

你还需要一本菜谱,上面详细记录了宫保鸡丁的做法,这就是 “模型”,指导着如何将食材加工成最终的菜肴。

那么,“训练好的大模型”是什么呢?

它就像 “已经按照菜谱步骤预先处理好的食材”(没错就是预制菜)。 你不需要从头开始处理生鸡肉,只需要根据自己的口味进行简单的翻炒,就能快速做出一盘香喷喷的宫保鸡丁。

具体来说:

“预训练” 就好比是按照菜谱,将鸡肉切丁、腌制、花生炒香等步骤预先完成,得到可以直接下锅的食材。

“大模型” 就好比是这道菜的预制菜版本,它已经包含了所有主要食材和调料,你只需要简单加热就能享用。

“微调” 则是根据你的口味,对这道预制菜进行微调,比如加点糖、醋或者辣椒,使其更符合你的口味。

因此,“训练好的大模型”并不是一个可以直接使用的程序,而更像是一个 “半成品”。它包含了从大量数据中学习到的知识,但还需要根据具体的应用场景进行微调,才能发挥最大的作用。

结束打趣,下面我们就以GGUF格式为例,分析一下预训练好的模型文件。

什么是GGUF

GGUF格式是用于存储大型模型预训练结果的,相较于Hugging Face和torch的bin文件,它采用了紧凑的二进制编码格式、优化的数据结构以及内存映射等技术,提供了更高效的数据存储和访问方式。

GGUF文件主要包含三部分包括文件头、元数据键值对和张量信息,具体一点包含一下几个部分。

  • 文件头 (Header): 包含用于识别文件类型和版本的基本信息。
    • Magic Number:一个特定的数字或字符序列,用于标识文件格式。
    • Version:文件格式的版本号,指明了文件遵循的具体规范或标准。
  • 元数据键值对 (Metadata Key-Value Pairs): 存储关于模型的额外信息,如作者、训练信息、模型描述等。
    • Key:一个字符串,标识元数据的名称。
    • Value Type:数据类型,指明值的格式(如整数、浮点数、字符串等)。
    • Value:具体的元数据内容。
  • 张量计数 (Tensor Count): 标识文件中包含的张量(Tensor)数量。
    • Count:一个整数,表示文件中张量的总数。
  • 张量信息 (Tensor Info):描述每个张量的具体信息,包括形状、类型和数据位置。
    • Name:张量的名称。
    • Dimensions:张量的维度信息。
    • Type:张量数据的类型(如浮点数、整数等)。
    • Offset:指明张量数据在文件中的位置。
  • 对齐填充 (Alignment Padding):确保数据块在内存中正确对齐,有助于提高访问效率。
    • 通常是一些填充字节,用于保证后续数据的内存对齐。
  • 张量数据 (Tensor Data):存储模型的实际权重和参数。
    • Binary Data:模型的权重和参数的二进制表示。
  • 端序标识 (Endianness): 指示文件中数值数据的字节顺序(大端或小端)。
    • 通常是一个标记,表明文件遵循的端序。
  • 扩展信息 (Extension Information): 允许文件格式未来扩展,以包含新的数据类型或结构。
    • 可以是新加入的任何额外信息,为将来的格式升级预留空间。

下面我们用HuggingFace Hub 提供的 GGUF 文件查看器,看看我们前面讨论的“Phi-3-mini-4k-instruct-fp16.gguf ”模型预训练文件的元数据和张量信息(名称、形状、精度)。

从上我们可以看到,“训练好的大模型”通常会包含以下内容:

1. 模型架构和参数

模型权重:存储神经网络的权重参数,这些权重是通过训练过程学习到的。

偏置项:存储神经网络的偏置参数。

网络结构:描述模型的层数、每层的神经元数量、激活函数等架构细节。

2. 训练配置

优化器状态:保存优化算法的状态,包括动量项和学习率。

超参数:记录训练过程中使用的超参数,如学习率、批量大小、训练轮数等。

3. 数据处理信息

词汇表:包含模型使用的词汇表,用于将文本输入转换为张量。

词嵌入:词汇表中每个词的嵌入向量,通常是预训练的词向量。

数据预处理规范:描述数据预处理步骤,如分词方式、规范化步骤等。

4. 训练数据和元数据

数据源信息:记录训练数据的来源、收集方式及相关许可信息。

数据标注信息:如果训练数据包含标注,则记录这些标注信息,如分类标签、实体标注等。

5. 版本和兼容性信息

模型版本:记录模型的版本信息,以便于不同版本之间的兼容和对比。

框架版本:记录用于训练模型的深度学习框架版本。

6. 模型性能和评估指标

性能指标:记录模型在训练和验证集上的性能指标,如准确率、损失值等。

评估报告:可能包括详细的评估报告,描述模型在不同测试集上的表现。

7. 文档和说明

模型描述:详细描述模型的架构、训练过程和用途。

使用指南:提供如何加载和使用模型的说明,可能包括代码示例。

训练好的大语言模型包含了大量学习到的知识、模型参数、训练数据和其他信息。这些内容共同作用,使得模型能够执行各种语言任务,例如生成文本、回答问题、翻译语言等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1054594.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

POLARDB:新零售用户MySQL上云最佳选择

什么是云数据库POLARDB? POLARDB是阿里云自主研发的最新一代RDS关系型数据库,是特别针对互联网场景设计的Cloud-Native 云原生数据库。POLARDB for MySQL版本,在提供100%兼容MySQL5.6/8.0的关系型事务处理ACID特性之上,能够提供完…

算法之背包问题

可分的背包问题是可以用贪心法来解决,而0-1背包问题通常使用动态规划方法来解决。 可分背包问题: 在可分背包问题中,物品可以被分割,您可以取走物品的一部分以适应背包的容量。这里的关键是物品的价值密度,即单…

间接平差——以水准网平差为例 (python详细过程版)

目录 一、原理概述二、案例分析三、代码实现四、结果展示本文由CSDN点云侠原创,间接平差——以水准网平差为例 (python详细过程版),爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。 一、原理概述 间接平差的函数模型和随机模型…

py黑帽子学习笔记_scapy

简介 代码简洁:相比于前两个博客总结,很多socket操作,如果使用scapy仅需几行代码即可实现 获取邮箱身份凭证 编写基础嗅探器,脚本可显示任何收到的一个包的详细情况 直接运行 尝试监听邮件收发,监听指定端口&#x…

解密网络流量监控:优化IT运维的利器

引言: 在当今数字化时代,网络流量监控是维护网络稳定与业务连续性的关键。作为一名资深网络工程师,我将分享一些关于网络流量监控的重要知识,并探讨如何在IT运维中运用这一工具优化网络性能,确保业务的顺畅进行。 1. 网…

Biological Psychiatry:内源性功能连接的特定模式与强迫症的伤害回避有关

摘要 强迫症(OCD)患者通常在没有实际威胁的情况下表现出持续的回避行为。强迫症对生活质量的影响和患者之间的异质性使得寻找新的大脑-行为干预目标十分有必要。基于啮齿类动物和非人灵长类动物持续回避行为的机制和解剖学研究,本研究的目标是测试持续回避行为相关…

用于脑肿瘤分割的跨模态深度特征学习| 文献速递-深度学习肿瘤自动分割

Title 题目 Cross-modality deep feature learning for brain tumor segmentation 用于脑肿瘤分割的跨模态深度特征学习 01 文献速递介绍 作为最致命的流行病,脑肿瘤的研究越来越受到关注。本文研究了一种基于深度学习的自动分割胶质瘤的方法,称为脑…

百度ERNIE系列预训练语言模型浅析(4)-总结篇

总结:ERNIE 3.0与ERNIE 2.0比较 (1)相同点: 采用连续学习 采用了多个语义层级的预训练任务 (2)不同点: ERNIE 3.0 Transformer-XL Encoder(自回归自编码), ERNIE 2.0 Transformer Encode…

Pandas-中axis的用法

在Pandas中,min(axis)方法是计算DataFrame或Series中每行或每列的最小值的函数。该函数可以接受一个参数axis,用于指定计算最小值的方向。当axis0时,表示沿着行的方向计算最小值;当axis1时,表示沿着列的方向计算最小值…

网络原理-------TCP协议

文章目录 TCP协议TCP协议段格式TCP原理确认应答机制 (安全机制)超时重传机制 (安全机制)连接管理机制 (安全机制)滑动窗口 (效率机制)流量控制 (安全机制)拥塞控制 (安全机制)延迟应答 (效率机制)捎带应答 (效率机制) 基于TCP的应用层协议 TCP协议 TCP, 即 Transmission Contr…

c语言 分而治之(施特拉森矩阵乘法)

给定两个大小分别为 nxn 的方阵 A 和 B&#xff0c;求它们的乘法矩阵。 朴素方法&#xff1a;以下是两个矩阵相乘的简单方法。 void multiply(int A[][N], int B[][N], int C[][N]) { for (int i 0; i < N; i) { for (int j 0; j < N; j) { …

Vanna使用ollama分析本地MySQL数据库

上一章节中已经实现了vanna的本地运行&#xff0c;但是大模型和数据库都还是远程的&#xff0c;因为也就没办法去训练&#xff0c;这节一起来实现vanna分析本地mysql数据库&#xff0c;因为要使用本地大模型&#xff0c;所以开始之前需要给本地安装好大模型&#xff0c;我这里用…

Redis面试题深度解析

1、我看你做的项目中&#xff0c;都用到了redis&#xff0c;你在最近的项目中哪些场景使用了redis呢? 2、缓存穿透 布隆过滤器的误判现象 Redisson和Guava都对布隆过滤器进行了实现 3、缓存击穿 互斥锁&#xff0c;就是一个线程来修改&#xff0c;并占据了锁&#xff0c;另外其…

基于 Coze 从 0-1 搭建专属 小白的Bot 机器人

基于 Coze 从 0-1 搭建专属 小白的Bot 机器人 ​ 作为一个GIS从业人员&#xff0c;对于AI的使用是必不可少的&#xff0c;在过去的一两年里各种大模型频出&#xff0c;AI技术已经成为GIS领域的一项重要工具&#xff0c;为我们提供了许多强大的功能和解决方案。看到好文章都在介…

AI视频教程下载:全面掌握ChatGPT和LangChain开发AI应用(附源代码)

这是一门深入的课程&#xff0c;涉及ChatGPT、LangChain和Python。打造专注于现实世界AI集成的AI应用&#xff0c;课件附有每一节涉及到的源代码。 **你将学到什么&#xff1a;** - 将ChatGPT集成到LangChain的生产风格应用中 - 使用LangChain组件构建复杂的文本生成管道 - …

Jeecg | 完成配置后,如何启动整个项目?

前端启动步骤&#xff1a; 1. 以管理员身份打开控制台&#xff0c;切换到前端项目目录。 2. 输入 pnpm install 3. 输入 pnpm dev 4. 等待前端成功运行。 可以看到此时前端已经成功启动。 后端启动步骤&#xff1a; 1. 启动 mysql 服务器。 管理员身份打开控制台&#…

Nginx网页服务

nginx的配置: 1、全局块&#xff1a;全局配置&#xff0c;对全局生效&#xff1b; 2、events块&#xff1a;配置影响 Nginx 服务器与用户的网络连接&#xff1b; 3、http块&#xff1a;配置代理&#xff0c;缓存&#xff0c;日志定义等绝大多数功能和第三方模块的配置&#xf…

JavaDS-学习数据结构之如果从零开始手搓顺序表,顺带学习自定义异常怎么用!

前言 笔者开始学习数据结构了,虽然笔者已经会用了,不管是C 中的stl亦或是Java 中的集合,为了算法比赛多少都突击过,但只知其然而不知其所以然,还是会限制发展的,因此,笔者写下这篇博客.内容是手搓一个顺序表.顺带加一点异常的使用,大伙看个乐子就好了.有错误直接私信喷我就好了…

HarmonyOS-9(stage模式)

配置文件 {"module": {"requestPermissions": [ //权限{"name": "ohos.permission.EXECUTE_INSIGHT_INTENT"}],"name": "entry", //模块的名称"type": "entry", //模块类型 :ability类型和…

Sourcetree安装教程及使用

1 Sourcetree介绍 Sourcetree是一款免费的Git图形化客户端&#xff0c;它由Atlassian开发&#xff0c;提供了跨平台的支持&#xff0c;可运行在Windows和Mac操作系统上。Sourcetree可以让开发者更方便地使用Git来管理代码&#xff0c;不需要在命令行中输入复杂的Git命令&#x…