【机器学习】基于tensorflow实现你的第一个DNN网络

news/2024/7/25 21:45:22/文章来源:https://blog.csdn.net/weixin_48007632/article/details/139263131

博客导读:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

目录

一、引言

二、tensorflow介绍

2.1 tensorflow历史

2.2 tensorflow特点

 2.3 tensorflow安装

三、tensorflow实战

3.1 引入依赖的tensorflow库

3.2 训练数据准备

3.3 创建三层DNN模型

3.4 编译模型、定义损失函数与优化器

3.5 启动训练,迭代收敛

3.6 模型评估

3.7 可以直接跑的代码 

四、总结


一、引言

上一篇AI智能体研发之路-模型篇(四):一文入门pytorch开发介绍如何使用pytorch实现一个简单的DNN网络,今天我们还是用同样的例子,看看使用tensorflow如何实现。

二、tensorflow介绍

2.1 tensorflow历史

TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API)。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。

2.2 tensorflow特点

深度学习时代,tensorflow在工业应用较为广泛,而pytorch更多应用于研究中。大模型时代,pytorch是很多项目的底层库,大有超过tensorflow的趋势。可谓并驾齐驱。

  • 生态系统更成熟:TensorFlow拥有一个庞大的社区和丰富的资源,包括大量的教程、预训练模型和工具,适合从初学者到专家的各个层次用户。
  • 生产部署友好:TensorFlow支持更多的平台和设备,包括移动设备和边缘设备,提供了TensorFlow Lite和TensorFlow.js等,便于模型的部署和优化。
  • 静态图与动态图的结合:虽然早期TensorFlow以静态图为主,但TensorFlow 2.x引入了Eager Execution,结合了动态图的易用性和静态图的高性能,同时保持了模型的可部署性。
  • Keras集成:TensorFlow内建了Keras,这是一个高级神经网络API,使得模型构建、训练和评估更加简洁直观。
  • TensorBoard:TensorFlow自带的可视化工具TensorBoard,便于可视化模型结构、训练过程中的损失和指标,帮助用户更好地理解和调试模型。
  • 广泛的工业应用支持:由于其成熟度和稳定性,TensorFlow在工业界得到了广泛的应用,特别是在大型企业中。

 2.3 tensorflow安装

与pytorch一样,还是采用conda创建环境,采用pip安装tensorflow包

1.建立名为pytrain,python版本为3.11的conda环境(这里与pytorch一样)

conda create -n pytrain python=3.11
conda activate pytrain

​  

 2.采用pip下载tensorflow以及机器学习常用的scikit-learn和numpy包

pip install tensorflow scikit-learn numpy  -i https://mirrors.cloud.tencent.com/pypi/simple

​ 

这里未指定版本,默认下载最新版本tensorflow-2.16.1以及其他tensorboard等生态包。 

三、tensorflow实战

 动手实现一个三层DNN网络:

3.1 引入依赖的tensorflow库

这里主要是tensorflow、keras、sklearn、numpy等

Keras是一个用于构建和训练深度学习模型的高级API,它设计得极其用户友好,支持快速实验。Keras可以运行在TensorFlow之上。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import BinaryCrossentropy
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np

3.2 训练数据准备

这里采用numpy库进行数据随机生成

# 假设你已经有了特征数据 X 和标签数据 y
# X, y = ...  # 实际数据加载和预处理步骤
# 这里我们用随机数据作为示例
np.random.seed(0)
X = np.random.rand(1000, 1000)  # 1000个样本,每个样本1000个特征
y = np.random.randint(0, 2, size=(1000, 1))  # 二分类标签# 数据预处理,标准化特征
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
  • 首先,采用numpy的random随机生成X矩阵(1000行样本*1000行特征)和y矩阵(1000行0或1的label)
  • 其次,采用sklearn库中的StandardScaler将X矩阵中的每个样本特征数值标准化(将每个特征都转换为正态分布,均值为0,标准差为1),这一步骤对于机器学习算法的性能至关重要,特别是那些对输入数据的尺度敏感的算法。
  • 最后,按照2:8的比例从数据中切分出测试机与训练集

3.3 创建三层DNN模型

采用keras.sequential类,顾名思义“按顺序的”由输入至输出编排神经网络

# 创建模型
model = Sequential([Dense(512, input_shape=(X_train.shape[1],)),  # 第一层Activation('relu'),Dense(512),  # 第二层Activation('relu'),Dense(1),  # 输出层Activation('sigmoid')  # 二分类使用sigmoid
])

 Sequential是Keras中用于构建深度学习模型的一个类,特别适合于构建线性的堆叠层模型。这种模型结构是层与层直接相连,没有复杂的拓扑结构,适合于解决如图像分类、文本分类等任务

特点

  • 线性堆叠:层按照添加的顺序堆叠,每一层只与前一层有连接。
  • 易于使用:适合初学者和快速原型设计,对于复杂的网络结构可能不够灵活。
  • 灵活性限制:对于需要多输入或多输出,或者层间有复杂连接的模型,应使用更高级的模型结构,如Functional API。

3.4 编译模型、定义损失函数与优化器

不同于pytorch的实例化模型对象,这里采用compile对模型进行编译。与pytorch相同点是都要定义损失函数和优化器,方法与技巧完全相同。

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001),loss=BinaryCrossentropy(),metrics=['accuracy'])
  • optimizer=Adam(learning_rate=0.001):这里选择了Adam作为优化器。Adam(Adaptive Moment Estimation)是一种常用的优化算法,它结合了RMSprop和Momentum的优点,能够自动调整学习率。通过设置learning_rate=0.001,可以控制模型学习的速度。学习率是训练过程中的一个重要超参数,影响模型收敛的速度和最终的性能。
  • loss=BinaryCrossentropy():损失函数设置为二元交叉熵(Binary Crossentropy)。这个损失函数适用于二分类问题,它衡量了模型预测的概率分布与实际标签之间的差异。在二分类任务中,正确选择损失函数对于模型的性能至关重要。
  • metrics=['accuracy']:指定评估模型性能的指标。这里使用的是准确率(accuracy),即分类正确的比例。在训练和验证过程中,除了损失值外,还会计算并显示这个指标,帮助我们了解模型的性能。

3.5 启动训练,迭代收敛

不同于pytorch需要写两个循环处理每一行样本,tensorflow直接采用fit方法对输入的特征样本矩阵以及label矩阵进行训练

tensorflow版:

# 训练模型
history = model.fit(X_train, y_train, epochs=100, validation_split=0.1,  # 使用10%的数据作为验证集verbose=1)

pytorch版:

# 训练循环
num_epochs = 10
for epoch in range(num_epochs):model.train()  # 设置为训练模式running_loss = 0.0for i, (inputs, labels) in enumerate(data_loader, 0):optimizer.zero_grad()  # 清零梯度outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()  # 反向传播optimizer.step()  # 更新权重running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(data_loader)}')

对比来看,pytorch版的更加透明,有助于理解,tensorflow更加便捷 

运行后可以看到loss逐步收敛:​

3.6 模型评估

通过model.evaluate对模型进行评估,evaluate与fit的区别是只计算指标不进行模型更新

tensorflow版:

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f'Test loss: {loss}, Test accuracy: {accuracy}')

 pytorch版:

import torchmetrics # 导入torchmetricstest_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)with torch.no_grad():  # 确保在评估时不进行梯度计算for inputs, labels in test_data_loader:outputs = model(inputs)preds = torch.softmax(outputs, dim=1)# 更新指标计算器accuracy.update(preds, labels)recall.update(preds, labels)# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')print('Evaluation finished.')

对比pytorch需要写一个循环,tensorflow.keras的封装更为简洁

运行后,可以输出模型的准确率与召回率,由于采用随机生成的测试数据且迭代轮数较少,具体数值不错参考,可以根据自己需要丰富数据。

3.7 可以直接跑的代码 

与上一篇AI智能体研发之路-模型篇(四):一文入门pytorch开发一样,附可以直接运行的代码,先跑起来,再一行行研究!

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import BinaryCrossentropy
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np# 假设你已经有了特征数据 X 和标签数据 y
# X, y = ...  # 实际数据加载和预处理步骤
# 这里我们用随机数据作为示例
np.random.seed(0)
X = np.random.rand(1000, 1000)  # 1000个样本,每个样本1000个特征
y = np.random.randint(0, 2, size=(1000, 1))  # 二分类标签# 数据预处理,标准化特征
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 创建模型
model = Sequential([Dense(512, input_shape=(X_train.shape[1],)),  # 第一层Activation('relu'),Dense(512),  # 第二层Activation('relu'),Dense(1),  # 输出层Activation('sigmoid')  # 二分类使用sigmoid
])# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001),loss=BinaryCrossentropy(),metrics=['accuracy'])# 训练模型
history = model.fit(X_train, y_train, epochs=10, validation_split=0.1,  # 使用10%的数据作为验证集verbose=1)# 评估模型
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f'Test loss: {loss}, Test accuracy: {accuracy}')

四、总结

本文先对tensorflow深度学习框架历史、特点及安装方法进行介绍,接下来基于tensorflow带读者一步步开发一个简单的三层神经网络程序,最后附可执行的代码供读者进行测试学习。个人感觉tensorflow封装程度高于pytorch,网络结构也更加清晰,但pytorch更加透明。

喜欢的话期待您的关注、点赞、收藏,您的互动是对我最大的鼓励!

如果还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1054479.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FTP协议——BFTPD基本操作(Ubuntu+Win)

1、描述 本机(Win10)与虚拟机(Ubuntu22.04.4)上的BFTPD服务器建立FTP连接,执行一些基本操作。BFTPD安装教程:FTP协议——BFTPD安装(Linux)-CSDN博客 2、 步骤 启动BFTPD。启动文件…

工程文档CAD转换必备!快速将 DWG 转换到 PNG ~

Aspose.CAD 是一个独立的类库,以加强Java应用程序处理和渲染CAD图纸,而不需要AutoCAD或任何其他渲染工作流程。该CAD类库允许将DWG, DWT, DWF, DWFX, IFC, PLT, DGN, OBJ, STL, IGES, CFF2文件、布局和图层高质量地转换为PDF和光栅图像格式。 Aspose AP…

uni-app解决表格uni-table样式问题

一、如何让表格文字只显示一行,超出部分用省略号表示 步骤 : 给table设置table-layout:fixed; 列宽由表格宽度和列宽度设定。(默认是由单元格内容设定)让表格元素继承父元素宽度固定table-layout: inherit;overflow: hidden;超过…

Laravel 图片添加水印

和这个配合使用 Laravel ThinkPhP 海报生成_laravel 制作海报-CSDN博客 代码 //水印 $x_length $imageInfo[0]; $y_length $imageInfo[1];$color imagecolorallocatealpha($posterImage, 255, 255, 255, 70); // 增加透明度参数alpha$font_size 40; //字体大小 $angle …

面向链接预测的知识图谱表示学习方法综述

源自:软件学报 作者:杜雪盈, 刘名威, 沈立炜, 彭鑫 注:若出现无法显示完全的情况,可搜索“人工智能技术与咨询”查看完整文章 摘 要 作为人工智能的重要基石, 知识图谱能够从互联网海量数据中抽取并表达先验知识, 极大程度解决…

Make-An-Audio——用于语音生成的提示增强扩散模型

0.引言 论文提出了一个从文本生成语音的扩散模型 Make-An-Audio。该模型将文本提示作为输入,并据此生成语音。例如,输入 “一只猫在喵喵叫,一个年轻女人的声音”,就会输出猫在喵喵叫,一个女人在说话的音频。这项研究已…

基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法,对比两个算法的仿真时间,收敛曲线,以及路径规划的结果&#xff0…

GDPU Java 天码行空13

(一)实验目的 1、掌握JAVA中与网络程序开发相关的知识点; 2、理解并掌握网络编程开发思想及方法; 3、熟悉项目开发的分包方法和依据; 4、实现聊天室中客服端和服务器端的实现方法; 5、熟悉多线程程序开发方…

前端 |【JavaScript】JS 删除数组中某个元素的方法有哪些?超简洁六大方法!

一、length属性 在JavaScript中,length属性用于获取数组的长度。可用于删除数组中的最后一个元素,只需将长度减1即可。 // 创建一个数组 var a [1, 2, 3, 4, 5]; // 使用length属性获取数组长度 console.log(a.length); // 输出:5 a.lengt…

工业采集网关的功能主要有哪些?为企业带来哪些价值提升?天拓四方

一、行业背景 随着工业领域的快速发展,尤其是智能制造的兴起,工业自动化、智能化和数字化已成为工业转型升级的必然趋势。在这一进程中,工业数据采集和处理扮演着至关重要的角色。作为连接工业现场设备、传感器与上层管理系统的桥梁&#xf…

喜讯 国信华源荣获中国安全科技进步奖二等奖

喜讯!喜讯! 近日,由北京国信华源科技有限公司携手中国地质环境监测院等单位共同参与完成的《基于云端协同的突发性地质灾害三维场景模型构建与动力学模拟关键技术研究》项目荣获中国安全生产协会颁发的“第四届安全科技进步奖二等奖”荣誉证…

数据结构(一)顺序表

目录 一、概念(一)数据结构的三元素1. 逻辑结构(1)线性结构(2)非线性结构 2. 存储结构(1)顺序存储(2)链式存储(3)索引存储 3. 运算 &a…

【C++】<图形库> 三人成棋(面向对象写法)

目录 一、游戏需求 二、程序架构 三、代码实现 四、实现效果 五、已知BUG 一、游戏需求 构建一个五子棋游戏,在自定义棋盘宽度和高度的基础上,实现三人对战功能,并且能判定谁输谁赢。 二、程序架构 (1) 对象分析: 【1】 需…

mysql去除重复数据

需求描述 doc表有很多重复的title,想去除掉重复的记录 表结构 CREATE TABLE doc (id INT PRIMARY KEY,title VARCHAR(255),content TEXT );去重SQL -- 创建临时表 CREATE TEMPORARY TABLE temp_doc AS SELECT * FROM doc WHERE 10;-- 插入唯一的记录(每个title最…

MiniPCIe/SATA双用插槽无法识别minipcie模块怎么回事!

在计算机和嵌入式系统设计中,MiniPCIe/SATA双用插槽作为一种高度集成的解决方案,提供了极大的灵活性与扩展能力。它不仅能够支持MiniPCIe接口的无线网卡、固态硬盘控制器等模块,还能适应SATA接口的硬盘或固态存储设备,大大丰富了系统配置的可能性。尽管设计初衷良好,但在实…

三方语言中调用, Go Energy GUI编译的dll动态链接库CEF

如何在其它编程语言中调用energy编译的dll动态链接库,以使用CEF 或 LCL库 Energy是Go语言基于LCL CEF开发的跨平台GUI框架, 具有很容易使用CEF 和 LCL控件库 interface 便利 示例链接 正文 为方便起见使用 python 调用 go energy 编译的dll 准备 系统&#x…

ubuntu server版 虚拟机根目录磁盘扩容

之前一直使用桌面版ubuntu,因为项目原因需要拉取的代码太大了且项目比较多选择了体量更小的Ubuntu server版,在使用中发现根目录的磁盘很快就用满了 如上,明明分配的300G但是/dev/mapper/ubuntu--vg-ubuntu--lv 只有98G都用满了 server版本与桌面版不同的是在server版安装的时…

【python】numpy库计算矩阵特征值和特征向量

目录 0.环境 1.前提 2.全部代码 0.环境 windows eclipse python 1.前提 我的邻接矩阵是固定的,11*11 2.全部代码 要将邻接矩阵使用numpy赋值 #计算矩阵特征值 import numpy as np A np.array([[0,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0…

9.1 Go语言入门(环境篇)

Go语言入门(环境篇) 目录一、什么是Go语言二、下载安装配置Go语言开发环境1. 下载2. 安装3. 配置环境变量4. 安装环境验证 三、 开发工具1. 下载2. 安装3. 激活4. 配置SDK 四、 创建go工程文件并运行1. 创建go工程2. 示例代码3. 运行代码 目录 一、什么…

AI时代的服装设计师--AIGC

AI时代的服装设计师--AIGC AIGCAIGC设计能替代真正的设计师吗森马T恤设计AIGC优势、优化 本文记录于去年参加的一次森马T恤设计活动的感受。 AIGC 可以说,近期以来,随着ChatGPT的不断发展,从ChatGPT-3到ChatGPT-4的飞速发展,AIGC…