Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本安装

news/2024/7/22 13:06:51/文章来源:https://blog.csdn.net/lida2003/article/details/139282331

Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本安装

  • 1. 源由
  • 2. 步骤
    • 2.1 Step1:系统安装
    • 2.2 Step2: nvidia-jetpack安装
    • 2.3 Step3:jtop安装
    • 2.4 Step4:h5py安装
    • 2.5 Step5:tensorflow安装
    • 2.6 Step6:jupyterlab安装
  • 3. 测试
  • 4. 参考资料
  • 5. 补充
    • 5.1 直接安装tensorflow==2.15.0+nv24.05 - “Failed to build h5py”
    • 5.2 直接安装h5py - “Failed to build h5py”

1. 源由

  1. Jetson Orin Nano Linux 36.2 6.0DP 对tensorflow支持上存在BUG,导致某些场景异常。不推荐使用6.0DP, Develop View Version,详见:Jammy@Jetson Orin Nano - Tensorflow GPU版本安装
  2. NVIDIA对于三方库(tensorflow)的支持不是很给力,可能源于内部商业逻辑,研发资源投入不足。发布的版本,仍然存在诸多安装问题。

虽然NVIDIA存在诸多资源配置上的问题,但是对开源还是有些许资源配给和验证,证明了这块热点区域的价值。

为此,我们特地整理一份资料,以便对于Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本的安装提供解决方法。

2. 步骤

2.1 Step1:系统安装

详细请参考:

  • Linux 36.3@Jetson Orin Nano之系统安装
  • Linux 36.2@Jetson Orin Nano之基础环境构建

2.2 Step2: nvidia-jetpack安装

注:默认不安装nvidia-jetpack。

$ sudo apt update
$ sudo apt install nvidia-jetpack

2.3 Step3:jtop安装

用于查看nvidia-jetpack安装情况。

$ sudo apt update
$ sudo apt install python3-pip
$ sudo pip3 install -U jetson-stats
$ sudo systemctl restart jtop.service

2.4 Step4:h5py安装

注:这个步骤非常重要,如果不做会出现补充部分描述的h5py编译失败错误。相关解决方法在jetson nano上就有,但是到了jetson orin nano上依然存在:Failed to build wheel for h5py , in JETSON NANO。

$ sudo apt-get install python3-pip
$ sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev 
$ sudo pip3 install cython
$ sudo pip3 install h5py
Collecting h5pyUsing cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Requirement already satisfied: numpy>=1.17.3 in /usr/lib/python3/dist-packages (from h5py) (1.21.5)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... -                                                                                                                                                doneCreated wheel for h5py: filename=h5py-3.11.0-cp310-cp310-linux_aarch64.whl size=6906150 sha256=e91885c8ae20d8207e79bd0aee4f794338ba8df1bd4634a8d41926c2f230697eStored in directory: /root/.cache/pip/wheels/54/6c/66/4f9de317fb7a5505a348881fc3666b289fde493612707458a3
Successfully built h5py
Installing collected packages: h5py
Successfully installed h5py-3.11.0
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

2.5 Step5:tensorflow安装

虽然这里提示不少问题,重点放在第一点:

  1. tensorflow-2.15.0+nv24.5安装成功

Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 cachetools-5.3.3 flatbuffers-24.3.25 gast-0.5.4 google-auth-2.29.0 google-auth-oauthlib-1.2.0 google-pasta-0.2.0 grpcio-1.64.0 keras-2.15.0 libclang-18.1.1 ml-dtypes-0.2.0 numpy-1.26.4 opt-einsum-3.3.0 protobuf-4.25.3 pyasn1-0.6.0 pyasn1-modules-0.4.0 requests-oauthlib-2.0.0 rsa-4.9 tensorboard-2.15.2 tensorboard-data-server-0.7.2 tensorflow-2.15.0+nv24.5 tensorflow-estimator-2.15.0 tensorflow-io-gcs-filesystem-0.37.0 termcolor-2.4.0 werkzeug-3.0.3 wrapt-1.14.1

  1. pip的依赖关系可能存在问题

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
onnx-graphsurgeon 0.3.12 requires onnx, which is not installed.

  1. sudo安装友情提示

WARNING: Running pip as the ‘root’ user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60 tensorflow==2.15.0+nv24.05
Looking in indexes: https://pypi.org/simple, https://developer.download.nvidia.com/compute/redist/jp/v60
Collecting tensorflow==2.15.0+nv24.05Using cached https://developer.download.nvidia.cn/compute/redist/jp/v60/tensorflow/tensorflow-2.15.0%2Bnv24.05-cp310-cp310-linux_aarch64.whl (465.5 MB)
Collecting absl-py>=1.0.0 (from tensorflow==2.15.0+nv24.05)Using cached absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting astunparse>=1.6.0 (from tensorflow==2.15.0+nv24.05)Using cached astunparse-1.6.3-py2.py3-none-any.whl.metadata (4.4 kB)
Collecting flatbuffers>=23.5.26 (from tensorflow==2.15.0+nv24.05)Using cached flatbuffers-24.3.25-py2.py3-none-any.whl.metadata (850 bytes)
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow==2.15.0+nv24.05)Using cached gast-0.5.4-py3-none-any.whl.metadata (1.3 kB)
Collecting google-pasta>=0.1.1 (from tensorflow==2.15.0+nv24.05)Using cached google_pasta-0.2.0-py3-none-any.whl.metadata (814 bytes)
Requirement already satisfied: h5py>=2.9.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (3.11.0)
Collecting libclang>=13.0.0 (from tensorflow==2.15.0+nv24.05)Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl.metadata (5.2 kB)
Collecting ml-dtypes~=0.2.0 (from tensorflow==2.15.0+nv24.05)Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (20 kB)
Collecting numpy<2.0.0,>=1.23.5 (from tensorflow==2.15.0+nv24.05)Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (62 kB)
Collecting opt-einsum>=2.3.2 (from tensorflow==2.15.0+nv24.05)Using cached opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (24.0)
Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow==2.15.0+nv24.05)Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl.metadata (541 bytes)
Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (70.0.0)
Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (1.16.0)
Collecting termcolor>=1.1.0 (from tensorflow==2.15.0+nv24.05)Using cached termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)
Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (4.12.0)
Collecting wrapt<1.15,>=1.11.0 (from tensorflow==2.15.0+nv24.05)Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (6.7 kB)
Collecting tensorflow-io-gcs-filesystem>=0.23.1 (from tensorflow==2.15.0+nv24.05)Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (14 kB)
Collecting grpcio<2.0,>=1.24.3 (from tensorflow==2.15.0+nv24.05)Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl.metadata (3.3 kB)
Collecting tensorboard<2.16,>=2.15 (from tensorflow==2.15.0+nv24.05)Using cached tensorboard-2.15.2-py3-none-any.whl.metadata (1.7 kB)
Collecting tensorflow-estimator<2.16,>=2.15.0 (from tensorflow==2.15.0+nv24.05)Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl.metadata (1.3 kB)
Collecting keras<2.16,>=2.15.0 (from tensorflow==2.15.0+nv24.05)Using cached keras-2.15.0-py3-none-any.whl.metadata (2.4 kB)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow==2.15.0+nv24.05) (0.43.0)
Collecting google-auth<3,>=1.6.3 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached google_auth-2.29.0-py2.py3-none-any.whl.metadata (4.7 kB)
Collecting google-auth-oauthlib<2,>=0.5 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata (2.7 kB)
Requirement already satisfied: markdown>=2.6.8 in /usr/lib/python3/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.6)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2.32.2)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached werkzeug-3.0.3-py3-none-any.whl.metadata (3.7 kB)
Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached cachetools-5.3.3-py3-none-any.whl.metadata (5.3 kB)
Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached pyasn1_modules-0.4.0-py3-none-any.whl.metadata (3.4 kB)
Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached rsa-4.9-py3-none-any.whl.metadata (4.2 kB)
Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl.metadata (11 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (1.26.5)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2020.6.20)
Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (3.0 kB)
Collecting pyasn1<0.7.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05)Using cached pyasn1-0.6.0-py2.py3-none-any.whl.metadata (8.3 kB)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/lib/python3/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.2.0)
Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)
Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Using cached flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)
Using cached gast-0.5.4-py3-none-any.whl (19 kB)
Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl (5.4 MB)
Using cached keras-2.15.0-py3-none-any.whl (1.7 MB)
Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl (23.8 MB)
Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB)
Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB)
Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl (293 kB)
Using cached tensorboard-2.15.2-py3-none-any.whl (5.5 MB)
Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)
Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB)
Using cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (78 kB)
Using cached google_auth-2.29.0-py2.py3-none-any.whl (189 kB)
Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB)
Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Using cached werkzeug-3.0.3-py3-none-any.whl (227 kB)
Using cached cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26 kB)
Using cached pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)
Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)
Using cached rsa-4.9-py3-none-any.whl (34 kB)
Using cached pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)
Installing collected packages: libclang, flatbuffers, wrapt, termcolor, tensorflow-io-gcs-filesystem, tensorflow-estimator, tensorboard-data-server, pyasn1, protobuf, numpy, MarkupSafe, keras, grpcio, google-pasta, gast, cachetools, astunparse, absl-py, werkzeug, rsa, requests-oauthlib, pyasn1-modules, opt-einsum, ml-dtypes, google-auth, google-auth-oauthlib, tensorboard, tensorflowAttempting uninstall: protobufFound existing installation: protobuf 3.12.4Uninstalling protobuf-3.12.4:Successfully uninstalled protobuf-3.12.4Attempting uninstall: numpyFound existing installation: numpy 1.21.5Uninstalling numpy-1.21.5:Successfully uninstalled numpy-1.21.5Attempting uninstall: MarkupSafeFound existing installation: MarkupSafe 2.0.1Uninstalling MarkupSafe-2.0.1:Successfully uninstalled MarkupSafe-2.0.1Attempting uninstall: gastFound existing installation: gast 0.5.2Uninstalling gast-0.5.2:Successfully uninstalled gast-0.5.2
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
onnx-graphsurgeon 0.3.12 requires onnx, which is not installed.
Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 cachetools-5.3.3 flatbuffers-24.3.25 gast-0.5.4 google-auth-2.29.0 google-auth-oauthlib-1.2.0 google-pasta-0.2.0 grpcio-1.64.0 keras-2.15.0 libclang-18.1.1 ml-dtypes-0.2.0 numpy-1.26.4 opt-einsum-3.3.0 protobuf-4.25.3 pyasn1-0.6.0 pyasn1-modules-0.4.0 requests-oauthlib-2.0.0 rsa-4.9 tensorboard-2.15.2 tensorboard-data-server-0.7.2 tensorflow-2.15.0+nv24.5 tensorflow-estimator-2.15.0 tensorflow-io-gcs-filesystem-0.37.0 termcolor-2.4.0 werkzeug-3.0.3 wrapt-1.14.1
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

2.6 Step6:jupyterlab安装

$ sudo pip3 install jupyterlab

3. 测试

在v6.0DP版本中存在Inconsistency of NVIDIA 2.15.0+nv24.03 v.s. Colab v.s. Tensorflow Documentation问题。

Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本不存在上述问题,经验证:

在这里插入图片描述

在这里插入图片描述

4. 参考资料

【1】Linux 36.2@Jetson Orin Nano之Hello AI World!
【2】ubuntu22.04@Jetson Orin Nano之OpenCV安装
【3】ubuntu22.04@Jetson Orin Nano之CSI IMX219安装
【4】ubuntu22.04@Jetson Orin Nano安装&配置VNC服务端

5. 补充

5.1 直接安装tensorflow==2.15.0+nv24.05 - “Failed to build h5py”

$ sudo pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60 tensorflow==2.15.0+nv24.05
[sudo] password for daniel:
Looking in indexes: https://pypi.org/simple, https://developer.download.nvidia.com/compute/redist/jp/v60
Collecting tensorflow==2.15.0+nv24.05Downloading https://developer.download.nvidia.cn/compute/redist/jp/v60/tensorflow/tensorflow-2.15.0%2Bnv24.05-cp310-cp310-linux_aarch64.whl (465.5 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 465.5/465.5 MB 2.0 MB/s eta 0:00:00
Collecting wrapt<1.15,>=1.11.0Using cached wrapt-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (78 kB)
Collecting absl-py>=1.0.0Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (24.0)
Requirement already satisfied: setuptools in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (59.6.0)
Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl (293 kB)
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1Using cached gast-0.5.4-py3-none-any.whl (19 kB)
Collecting grpcio<2.0,>=1.24.3Using cached grpcio-1.64.0-cp310-cp310-manylinux_2_17_aarch64.whl (5.4 MB)
Collecting google-pasta>=0.1.1Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
Collecting astunparse>=1.6.0Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting opt-einsum>=2.3.2Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
Collecting keras<2.16,>=2.15.0Using cached keras-2.15.0-py3-none-any.whl (1.7 MB)
Collecting tensorflow-estimator<2.16,>=2.15.0Using cached tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)
Collecting numpy<2.0.0,>=1.23.5Using cached numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB)
Collecting flatbuffers>=23.5.26Using cached flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)
Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow==2.15.0+nv24.05) (1.16.0)
Collecting libclang>=13.0.0Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl (23.8 MB)
Collecting ml-dtypes~=0.2.0Using cached ml_dtypes-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB)
Collecting termcolor>=1.1.0Using cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Collecting tensorboard<2.16,>=2.15Using cached tensorboard-2.15.2-py3-none-any.whl (5.5 MB)
Collecting h5py>=2.9.0Using cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Collecting tensorflow-io-gcs-filesystem>=0.23.1Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB)
Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.15.0+nv24.05) (4.12.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/lib/python3/dist-packages (from astunparse>=1.6.0->tensorflow==2.15.0+nv24.05) (0.37.1)
Requirement already satisfied: markdown>=2.6.8 in /usr/lib/python3/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.6)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2.32.2)
Collecting google-auth-oauthlib<2,>=0.5Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB)
Collecting werkzeug>=1.0.1Using cached werkzeug-3.0.3-py3-none-any.whl (227 kB)
Collecting tensorboard-data-server<0.8.0,>=0.7.0Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Collecting google-auth<3,>=1.6.3Using cached google_auth-2.29.0-py2.py3-none-any.whl (189 kB)
Collecting rsa<5,>=3.1.4Using cached rsa-4.9-py3-none-any.whl (34 kB)
Collecting pyasn1-modules>=0.2.1Using cached pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)
Collecting cachetools<6.0,>=2.0.0Using cached cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Collecting requests-oauthlib>=0.7.0Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (2020.6.20)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests<3,>=2.21.0->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (1.26.5)
Collecting MarkupSafe>=2.1.1Using cached MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26 kB)
Collecting pyasn1<0.7.0,>=0.4.6Using cached pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/lib/python3/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow==2.15.0+nv24.05) (3.2.0)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... errorerror: subprocess-exited-with-error× Building wheel for h5py (pyproject.toml) did not run successfully.│ exit code: 1╰─> [7 lines of output]running bdist_wheelrunning buildrunning build_extLoading library to get build settings and version: libhdf5.soerror: Unable to load dependency HDF5, make sure HDF5 is installed properlyLibrary dirs checked: []error: libhdf5.so: cannot open shared object file: No such file or directory[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for h5py
Failed to build h5py
ERROR: Could not build wheels for h5py, which is required to install pyproject.toml-based projects

5.2 直接安装h5py - “Failed to build h5py”

$ sudo pip3 install h5py
Collecting h5pyUsing cached h5py-3.11.0.tar.gz (406 kB)Installing build dependencies ... doneGetting requirements to build wheel ... doneInstalling backend dependencies ... donePreparing metadata (pyproject.toml) ... done
Requirement already satisfied: numpy>=1.17.3 in /usr/lib/python3/dist-packages (from h5py) (1.21.5)
Building wheels for collected packages: h5pyBuilding wheel for h5py (pyproject.toml) ... errorerror: subprocess-exited-with-error× Building wheel for h5py (pyproject.toml) did not run successfully.│ exit code: 1╰─> [75 lines of output]running bdist_wheelrunning buildrunning build_pycreating buildcreating build/lib.linux-aarch64-cpython-310creating build/lib.linux-aarch64-cpython-310/h5pycopying h5py/ipy_completer.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/__init__.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/h5py_warnings.py -> build/lib.linux-aarch64-cpython-310/h5pycopying h5py/version.py -> build/lib.linux-aarch64-cpython-310/h5pycreating build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/files.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/group.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/selections.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/compat.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/datatype.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/filters.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/attrs.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/dataset.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/vds.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/dims.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/base.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcopying h5py/_hl/selections2.py -> build/lib.linux-aarch64-cpython-310/h5py/_hlcreating build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5d_direct_chunk.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_objects.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_group.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file2.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5o.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/conftest.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dimension_scales.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset_swmr.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attrs_data.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_selections.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5z.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_completions.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dtype.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset_getitem.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_base.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_filters.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attrs.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5pl.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/common.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5t.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dataset.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5f.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file_image.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_ros3.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_errors.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_datatype.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_h5p.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_attribute_create.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_slicing.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_big_endian_file.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_file_alignment.py -> build/lib.linux-aarch64-cpython-310/h5py/testscopying h5py/tests/test_dims_dimensionproxy.py -> build/lib.linux-aarch64-cpython-310/h5py/testscreating build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescreating build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_virtual_source.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_lowlevel_vds.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/__init__.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/test_vds/test_highlevel_vds.py -> build/lib.linux-aarch64-cpython-310/h5py/tests/test_vdscopying h5py/tests/data_files/vlen_string_dset_utc.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/vlen_string_s390x.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filescopying h5py/tests/data_files/vlen_string_dset.h5 -> build/lib.linux-aarch64-cpython-310/h5py/tests/data_filesrunning build_extLoading library to get build settings and version: libhdf5.soerror: Unable to load dependency HDF5, make sure HDF5 is installed properlyLibrary dirs checked: []error: libhdf5.so: cannot open shared object file: No such file or directory[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for h5py
Failed to build h5py
ERROR: Could not build wheels for h5py, which is required to install pyproject.toml-based projects

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1054016.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot——数据访问

优质博文&#xff1a;IT-BLOG-CN 对于数据访问层&#xff0c;无论是 SQL 还是 NoSQL&#xff0c;SpringBoot 默认采用整合 Spring Data 的方式进行统一处理&#xff0c;添加大量自动配置&#xff0c;屏蔽了很多设置。引入各种 xxxTemplate&#xff0c;xxxRepository 来简化我…

2024年上半年软件系统架构师考试【回忆版】

文章目录 考试时间考试地点综合知识案例分析1、微服务架构的优点和缺点2、质量属性的6个要素3、分布式锁 Redis的缺点4、MongoDB 存储矢量图的优势 论文回忆版论文一、论单元测试的设计与应用论文二、论大数据模型的设计与应用论文三、论模型驱动的架构设计及应用论文四、论云自…

Spring Boot中如何查询PGSQL分表后的数据

数据库用的pgsql&#xff0c;在表数据超过100w条的时候执行定时任务进行了分表&#xff0c;分表后表名命名为原的表名后面拼接时间&#xff0c;如原表名是card_device_trajectory_info&#xff0c;分表后拼接时间后得到card_device_trajectory_info_20240503&#xff0c;然后分…

量子密钥分发系统基础器件(一):光纤干涉仪

干涉仪的基本原理是利用波的叠加来获得波的相位信息&#xff0c;从而获取实验中所关心的物理量。光纤干涉仪是由光学干涉仪发展而来的&#xff0c;利用光纤实现光的干涉&#xff0c;由于光纤取代透镜系统构成的光路具有柔软、形状可随意变化、传输距离远等特点&#xff0c;当前…

RT-DETR算法改进【NO.1】借鉴CVPR2024中的StarNet网络StarBlock改进算法

前 言 YOLO算法改进的路有点拥挤,尝试选择其他的baseline作为算法研究,可能会更加好发一些文章。后面将陆续介绍RT-DETR算法改进的方法思路。 很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解…

HTML静态网页成品作业(HTML+CSS)——动漫熊出没介绍网页(3个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有3个页面。 二、作品演示 三、代…

如何使用git上传linux下的项目!---附带每一步截图

在实际项目中&#xff0c;我们需要把自己的模块递给GitHub&#xff0c;需要别人的模块的时候拉下来&#xff0c;那么我们怎么把自己的项目递给GitHub呢&#xff1f;下面做一个总结&#xff1a; 登录GitHub 创建一个仓库 填写相关信息 项目名称是必填的&#xff0c;项目描述可以…

09Django项目--用户管理系统--删

对应视频链接点击直达 09Django项目--用户管理系统--删 对应视频链接点击直达删a&#xff0c;本质b&#xff0c;删除 页面相关a&#xff0c;index页面新增操作按钮b&#xff0c;ajax删除和提示c&#xff0c;完整版本 OVER&#xff0c;不会有人不会吧不会的加Q1394006513结语 一…

冯喜运:5.29市场避险情绪升温,黄金原油小幅收涨

【黄金消息面分析】&#xff1a;周二&#xff08;5月28日&#xff09;美盘时段&#xff0c;由于美元走弱且市场情绪出现负面变化&#xff0c;黄金收复早前跌幅&#xff0c;站上2350美元关口。金价早盘一度走弱&#xff0c;源于美联储降息可能性降低带来压力&#xff0c;投资者在…

(四十八)第 7 章 图(图的数组(邻接矩阵)存储)

1. 背景说明 2. 示例代码 1) errorRecord.h // 记录错误宏定义头文件#ifndef ERROR_RECORD_H #define ERROR_RECORD_H#include <stdio.h> #include <string.h> #include <stdint.h>// 从文件路径中提取文件名 #define FILE_NAME(X) strrchr(X, \\) ? strrch…

关于已配好java环境但双击无法打开jar包的解决方案

如果你已经装好了 java 环境直接跳到最后看解决方法即可 先说一下你安装的 java 环境&#xff0c;如果完全是默认选项安装&#xff0c;则会安装 jdk 和 jre&#xff0c;并且在安装 jre 时还需要安装目录下为空&#xff0c;其实 jre 的安装是多余的&#xff0c;因为安装的 jdk 里…

LES物流执行系统,在离散制造行业有那些作用和价值?

离散制造企业往往面临的是多品种、小批量的非标订单生产&#xff0c;传统推动式物流系统已经无法应对计划变化滞后&#xff0c;各车间、工序之间难以衔接等情况&#xff0c;特别是密集劳动力的电子行业&#xff0c;非标产品 SKU 种类繁多&#xff0c;物料配送复杂&#xff0c;对…

Sentinel-2 哨兵二号数据介绍及下载

1 Sentinel-2简介 SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. Sentinel-2 是高分辨率多光谱成像卫星&#xff0c;一颗卫星的重访周期为10天&#xff0c;两颗互补&#xff0c;重访周期为5天。分为2A和2B两颗卫星。2A于2015年6月…

【ubuntu20】--- 定时同步文件

在编程的艺术世界里&#xff0c;代码和灵感需要寻找到最佳的交融点&#xff0c;才能打造出令人为之惊叹的作品。而在这座秋知叶i博客的殿堂里&#xff0c;我们将共同追寻这种完美结合&#xff0c;为未来的世界留下属于我们的独特印记。 【Linux命令】--- 多核压缩命令大全&…

【IDEA】Redis可视化神器

在开发过程中&#xff0c;为了方便地管理 Redis 数据库&#xff0c;我们可能会使用一些数据库可视化插件。这些插件通常可以帮助你在 IDE 中直观地查看和管理 Redis 数据库&#xff0c;包括查看键值对、执行命令、监视数据库活动等。 IDEA作为IDE界的Jenkins&#xff0c;本身自…

基于OrangePi AIpro的后端服务器构建

一. OrangePi AIpro简介 1.1 OrangePi AIpro外观 1.2 OrangePi AIpro配置 OrangePi AIpro(8T)采用昇腾AI技术路线&#xff0c;具体为4核64位处理器AI处理器&#xff0c;集成图形处理器&#xff0c;支持8TOPS AI算力&#xff0c;拥有8GB/16GB LPDDR4X&#xff0c;可以外接32GB…

[java基础揉碎]文件IO流

目录 文件 什么是文件 文件流​编辑 常用的文件操作 创建文件方式一 创建文件方式二 创建文件方式三 tip:为什么new file 了还有执行createNewFile?new File的时候其实是在内存中创建了文件对象, 还没有在磁盘中, 当执行createNewFile的时候才是往磁盘中写入​编辑 …

Apache、Nginx、IIS文件解析漏洞

目录 1、文件解析漏洞介绍 2、Apache相关的解析漏洞 &#xff08;1&#xff09;多后缀解析漏洞 &#xff08;2&#xff09;Apache配置问题 &#xff08;3&#xff09;换行符解析漏洞 &#xff08;4&#xff09;罕见后缀解析 3、Nginx相关的解析漏洞 &#xff08;1&…

nginx源码阅读理解 [持续更新,建议关注]

文章目录 前述一、nginx 进程模型基本流程二、源码里的小点1.对字符串操作都进行了原生实现2.配置文件解析也是原生实现待续 前述 通过对 nginx 的了解和代码简单阅读&#xff0c;发现这个C代码的中间件确实存在过人之处&#xff0c;使用场景特别多&#xff0c;插件模块很丰富…

gmssl vs2010编译

1、虚拟机win10 x64&#xff0c;离线安装vs2010和2010sp1补丁&#xff1b; 2、安装ActivePerl_v5.28.1.0000和nasm-2.16.03-installer-x64均是默认完整安装&#xff1b; nasm官网下载&#xff1a; Index of /pub/nasm/releasebuilds/2.16.03/win64https://www.nasm.us/pub/nas…