吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn)

news/2024/5/29 17:08:52/文章来源:https://blog.csdn.net/qyk666/article/details/136590021

文章目录

  • 实验一
    • 目标
    • 工具
    • 梯度下降
      • 加载数据集
      • 缩放/规范化训练数据
      • 创建并拟合回归模型
      • 查看参数
      • 作出预测
      • 绘制结果
    • 恭喜
  • 实验二
    • 目标
    • 工具
    • 线性回归,闭式解
      • 加载数据集
      • 创建并拟合模型
      • 查看参数
      • 作出预测
    • 第二个例子
    • 恭喜

有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。这个工具包包含了你将在本课程中使用的许多算法的实现。

实验一

目标

在本实验中,你将:利用scikit-learn实现使用梯度下降的线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy。

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

np.set_printoptions(precision=2) 的作用是告诉 NumPy 在打印数组时只保留浮点数的两位小数。

梯度下降

Scikit-learn有一个梯度下降回归模型sklearn.linear_model.SGDRegressor。与之前的梯度下降实现一样,该模型在规范化输入时表现最好。sklearn预处理。StandardScaler将执行z-score归一化在以前的实验室。这里它被称为“标准分数”。

加载数据集

X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

缩放/规范化训练数据

scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")

在这里插入图片描述

创建并拟合回归模型

sgdr = SGDRegressor(max_iter=1000)
sgdr.fit(X_norm, y_train)
print(sgdr)
print(f"number of iterations completed: {sgdr.n_iter_}, number of weight updates: {sgdr.t_}")

这段代码使用了 SGDRegressor 类来进行线性回归模型的训练和预测。
首先,通过 SGDRegressor(max_iter=1000) 创建了一个随机梯度下降(SGD)回归器对象 sgdr,并设置最大迭代次数为 1000。
然后,使用 sgdr.fit(X_norm, y_train) 对模型进行拟合,其中 X_norm 是经过标准化处理后的特征数据,y_train 是对应的目标变量。
接着,通过 print(sgdr) 打印出 sgdr 对象的相关信息,包括模型参数和超参数等。
最后,使用 f-string 格式化字符串,打印出训练完成的迭代次数 sgdr.n_iter_ 和权重更新次数 sgdr.t_

查看参数

注意,参数与规范化的输入数据相关联。拟合参数与之前使用该数据的实验室中发现的非常接近。

b_norm = sgdr.intercept_
w_norm = sgdr.coef_
print(f"model parameters:                   w: {w_norm}, b:{b_norm}")
print(f"model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16")

在这里插入图片描述

作出预测

预测训练数据的目标。同时使用预测例程并使用w和b进行计算。

# make a prediction using sgdr.predict()
y_pred_sgd = sgdr.predict(X_norm)
# make a prediction using w,b. 
y_pred = np.dot(X_norm, w_norm) + b_norm  
print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")print(f"Prediction on training set:\n{y_pred[:4]}" )
print(f"Target values \n{y_train[:4]}")

在这里插入图片描述

绘制结果

让我们绘制预测值与目标值的对比图。

# plot predictions and targets vs original features    
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):ax[i].scatter(X_train[:,i],y_train, label = 'target')ax[i].set_xlabel(X_features[i])ax[i].scatter(X_train[:,i],y_pred,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的梯度下降和特征归一化实现线性回归

实验二

目标

在本实验中,你将:利用scikit-learn实现基于正态方程的近似解线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

线性回归,闭式解

Scikit-learn具有线性回归模型,实现了封闭形式的线性回归。让我们使用早期实验室的数据——一个1000平方英尺的房子卖了30万美元,一个2000平方英尺的房子卖了50万美元。
在这里插入图片描述

加载数据集

X_train = np.array([1.0, 2.0])   #features
y_train = np.array([300, 500])   #target value

创建并拟合模型

下面的代码使用scikit-learn执行回归。第一步创建一个回归对象。第二步使用与对象相关的方法之一fit。这将执行回归,将参数拟合到输入数据。该工具包需要一个二维X矩阵。

linear_model = LinearRegression()
#X must be a 2-D Matrix
linear_model.fit(X_train.reshape(-1, 1), y_train) 

在这里插入图片描述

查看参数

在scikit-learn中,w和b参数被称为“系数”和“截距”

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")
print(f"'manual' prediction: f_wb = wx+b : {1200*w + b}")

在这里插入图片描述

作出预测

调用predict函数生成预测。

y_pred = linear_model.predict(X_train.reshape(-1, 1))print("Prediction on training set:", y_pred)X_test = np.array([[1200]])
print(f"Prediction for 1200 sqft house: ${linear_model.predict(X_test)[0]:0.2f}")

在这里插入图片描述

第二个例子

第二个例子来自早期的一个具有多个特征的实验。最终的参数值和预测非常接近该实验室非标准化“长期”的结果。这种不正常的运行需要几个小时才能产生结果,而这几乎是瞬间的。封闭形式的解决方案在诸如此类的较小数据集上工作得很好,但在较大的数据集上可能需要计算。

封闭形式的解不需要规范化

# load the dataset
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']
linear_model = LinearRegression()
linear_model.fit(X_train, y_train) 

在这里插入图片描述

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")

在这里插入图片描述
这里的权重1和权重4,相对于权重2和权重3太小,不知道为什么这里不舍去

print(f"Prediction on training set:\n {linear_model.predict(X_train)[:4]}" )
print(f"prediction using w,b:\n {(X_train @ w + b)[:4]}")
print(f"Target values \n {y_train[:4]}")x_house = np.array([1200, 3,1, 40]).reshape(-1,4)
x_house_predict = linear_model.predict(x_house)[0]
print(f" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = ${x_house_predict*1000:0.2f}")

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的接近形式的解决方案实现线性回归

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1005879.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day42 动态规划part4

先遍历物品还是先遍历背包二刷再考虑吧。累了,不想停留太久。 背包问题 二维 (卡码网题目) 各种解释: 要理解的是这个表格每一个格子都是当前所处情况的最大价值,我们用已经推导出的最大价值来推导当前情况的最大价值…

用chatgpt写论文重复率高吗?如何降低重复率?

ChatGPT写的论文重复率很低 ChatGPT写作是基于已有的语料库和文献进行训练的,因此在写作过程中会不可避免地引用或借鉴已有的研究成果和观点。同时,由于ChatGPT的表述方式和写作风格与人类存在一定的差异,也可能会导致论文与其他文章相似度高…

LiveGBS流媒体服务器中海康摄像头GB28181公网语音对讲、语音喊话的配置

LiveGBS海康摄像头国标语音对讲大华摄像头国标语音对讲GB28181语音对讲需要的设备及服务准备 1、背景2、准备2.1、服务端必备条件(注意)2.2、准备语音对讲设备2.2.1、不支持跨网对讲示例2.2.2、 支持跨网对讲示例 3、开启音频开始对讲4、搭建GB28181视频…

Linux学习笔记(一)Linux基本指令

文章目录 前言目录常见命令1. pwd 打印当前所在路径2. cd 改变路径、切换路径3. 家目录 回到顶级目录4. 当前路径和上一路径5. 上一次路径6. 绝对路径和相对路径7. ls 列出目录内容8. mkdir 创建目录9. rmdir 删除目录10. touch 创建文件11. mv 修改文件目录、移动路径12. cp 复…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:RemoteWindow)

远程控制窗口组件,可以通过此组件控制应用窗口,提供启动退出过程中控件动画和应用窗口联动动画的能力。 说明: 该组件从API Version 9开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 该组件为系统接口。…

【Axure高保真原型】下拉列表切换图表

今天和大家分享通过下拉列表动态切换统计图表的原型模板,我们可以通过下拉列表选择要显示的图表,包括柱状图、条形图、饼图、环形图、折线图、曲线图、面积图、阶梯图、雷达图;而且图表数据可以在左侧表格中动态维护,包括增加修改…

基于php的用户登录实现(v2版)(持续迭代)

目录 版本说明 数据库连接 登录页面:login.html 登录处理实现:login.php 用户欢迎页面:welcome.php 密码修改页面:change_password.html 修改执行:change_password.php 用户注册页面:register.html …

lvs+keepalive

虚拟路由冗余协议(Virtual Router Redundancy Protocol,简称VRRP) VRRP能够在不改变组网的情况下,将多台路由器虚拟成一个虚拟路由器,通过配置虚拟路由器的IP地址为默认网关,实现网关的备份。 协议版本: VRRPv2(常用&…

网络通信另个角度的认识(进程间通信),端口号(为什么要有,和pid的关系,分类,如何封装,和进程的定位原理+对应关系),客户端如何拿到服务端的port

目录 另一个角度认识网络通信 端口号 引入 -- 为什么要有端口号 问题 解决 端口号和pid 举例 介绍 分类 知名端口 注册端口 动态端口 客户端如何知道服务端的端口号 封装端口号 定位原理 进程和端口号的对应关系 数据如何被上层进程读到 另一个角度认识网络…

深入理解Vue3中利用mitt:实现轻量级事件监听与触发

在 Vue3 中,父组件和子组件之间可以通过一些方式进行通信。其中,父组件向子组件通信主要有两种方式:传值和调用子组件的方法。 一、父组件向子组件传值 当父组件需要向子组件传递数据时,可以通过属性绑定的方式来实现。父组件可…

【Redis】redis持久化

redis 持久化 Redis是内存数据库,数据都是存储在内存中,为了避免进程退出导致数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之…

leetcode 热题 100_删除链表的倒数第 N 个结点

题解一: 递归:利用递归栈逆向遍历链表,并用全局变量记录当前遍历的是倒数第几位节点,当遍历到待删节点的上一位节点时,node.nextnode.next.next删除待删节点。需要注意当删除的是头节点时,直接return head.…

Codeforces Round 933 (Div. 3) A~D

比赛链接 : codeforces.com/contest/1941 A . Rudolf and the Ticket 直接暴力即可 ; #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \n #define lowbit(x) (x&(-x)) #define sz(a) (int)a.size() #define p…

Docker进阶:深入了解容器数据卷

Docker进阶&#xff1a;深入了解容器数据卷 一、前言二、容器数据卷的作用三、容器数据卷的使用方法四、实战--使用docker部署前端项目&#xff08;数据卷挂载&#xff09;4.1 重要&#xff1a;准备工作&#xff0c;先在本地创建挂载目录4.2 启动一个临时的nginx容器&#xff0…

“光谱视界革新:ChatGPT在成像光谱遥感中的智能革命“

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境&#xff0c;是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型&#xff0c;在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用&#xff0c;人工智能…

前端去除网页水印

按F12&#xff0c;打开开发者工具面板&#xff0c;然后直接在样式搜索backgroud 然后直接取消backgroud 的复选框即可。

多数问题求解之蒙特卡洛与分治法

多数问题&#xff08;Majority Problem&#xff09;是一个有多种求解方法的经典问题&#xff0c;其问题定义如下&#xff1a; 给定一个大小为 n n n的数组&#xff0c;找出其中出现次数超过 n / 2 n/2 n/2的元素 例如&#xff1a;当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] […

SkyEye:助力飞行器状态控制系统仿真

飞行器与常见的航天器一样&#xff0c;属于安全关键领域的大型复杂设备&#xff0c;对安全性、可靠性有着极高的要求。为保证稳定飞行&#xff0c;需要对目标对象进行实时跟踪&#xff0c;通过发出正确的修正偏差指令来操纵飞行器改变飞行姿态&#xff0c;因此对飞行器状态控制…

leetcode刷题(javaScript)——分治思想(二分查找、快速排序)相关场景题总结

分治思想是一种将问题分解成更小的子问题&#xff0c;然后解决子问题并将结果合并的算法设计策略。二分查找、快速排序和折半查找都属于分治思想的经典算法。在leetcode里&#xff0c;分治思想一般结合其他场景出现&#xff0c;构成复合型题目。但是在看题时一定要了解能否用分…

考研数学|武忠祥「高数」+李永乐「线代」刷题指南

如果你全程都决定跟着武忠祥老师和李永乐老师&#xff0c;一张表格教会你如何买资料&#xff0c;听课以及使用这些资料&#xff1a; 上面的方法很详细了&#xff0c;大家照着做就行了&#xff0c;关键是大家实际操作的过程中可能会遇到各种问题&#xff0c;这也是我在考研备考中…